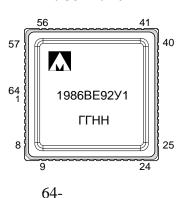


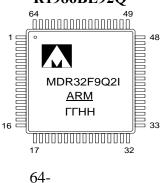

#### Микросхема 32-разрядного однокристального микро-ЭВМ с памятью Flash-типа 1986ВЕ9ху, К1986ВЕ9ху, К1986ВЕ9хуК K1986BE92QI, K1986BE92QC, 1986BE91H4, K1986BE91H4, 1986BE94H4, K1986BE94H4






1986BE92Y



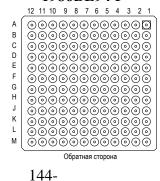

1986BE92Y1



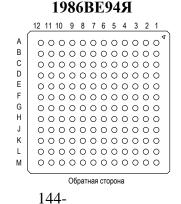
64-

4229.132-3

K1986BE92Q




H18.64-1


1986BE93Y 43 30 48 K1986BE93 ГГНН 6 18 48-

5153.64-2

#### 1986ВЕ94Ф



LQFP64



16.48-1

6109.144-

| Обозначение | Температурный диапазон |
|-------------|------------------------|
| 1986 9      | 60 ÷ 125 °             |
| 1986 9      | 60 ÷ 125 °             |
| 1986 9 K    | 0 ÷ 70 °               |
| 1986 9      | 0 ÷ 70 °               |
| 1986 9      | 0 ÷ 70 °               |
| 1986 92Q    | 0 ÷ 70 °               |
| 1986 92QI   | 40 ÷ 85 °              |

8307.144-

= 1, 2, 3, 4

```
К1986ВЕ9хуК
1986
      9 y
               К1986ВЕ9хГуК
1986
      9 yK,
                                                       немонотонным
                                                                       ΑЦП
                                  |-1...+2|
                                                                  1986
               К1986ВЕ9хДуК
                                                                        9 yK,
                           немонотонным ЦАП
   |-1...+2|
                              K1986BE92QI
               K1986BE92QC
                                 1986
                                       92 .
               1986BE91H4, K1986BE91H4, 1986BE94H4, K1986BE94H4
   Основные характеристики микроконтроллеров серии 1986ВЕ9х
   Ядро:
   -ARM 32-
                    RISC-
                              Cortex<sup>™</sup>-M3
                                                  2.0,
                                                                          80
                      1.25 DMIPS/
                                    (Dhrystone 2.1)
                                 MPU:
   Память:
                                                            128
                               Flash-
                           32
                                                                   , NAND Flash.
   Питание и тактовая частота:
                    2,2 \div 3,6 ;
                                                     1,8
                             RC
                                                   40
                                   2 \div 16
                                              32
                                          PLL
                                          PLL
                                                 USB.
   Режим пониженного энергопотребления:
            Sleep, Deep Sleep Standby;
   Аналоговые модули:
        12-
                            16
                                     );
                  12-
   Периферия:
               DMA
                   CAN
               USB
                                                Device Host;
                            UART, SPI, I2C;
        16-
       96
   Отладочные интерфейсы:
                                SWD JTAG.
```

## Содержание

|    |              |            | 7   |
|----|--------------|------------|-----|
|    |              |            | 8   |
|    | -            |            | 9   |
|    |              |            | 10  |
|    |              |            | 26  |
|    |              |            |     |
|    |              |            |     |
|    |              |            |     |
|    |              |            |     |
|    | CODE         |            | 37  |
|    | DATA         |            | 37  |
|    | PERIPHERAL   | <i>y</i>   | 37  |
|    | EXTERNAL R   | RAM        | 38  |
|    | SYSTEM       |            | 38  |
|    | BUS MATRIX   |            | 38  |
|    | BOOT ROM     |            | 38  |
|    | EEPROM       |            | 38  |
|    | SRAM         |            | 39  |
|    | ,            |            | 39  |
|    |              |            | 40  |
|    |              |            | 40  |
|    |              |            | 41  |
| Bi | t-band       |            | 43  |
|    |              |            | 44  |
|    |              |            | 46  |
|    |              |            | 47  |
|    |              |            | 49  |
| U. | ART          |            | 51  |
|    | Flash-       | MDR_EEPROM | 56  |
|    | Flash-       |            | 56  |
|    | Flash-       |            | 57  |
|    |              | Flash-     | 61  |
|    | ARM C        |            | 65  |
|    |              |            |     |
|    |              |            |     |
|    |              |            |     |
|    |              |            |     |
|    | ************ |            |     |
|    |              |            |     |
|    |              |            |     |
|    |              |            |     |
|    |              |            |     |
|    |              |            |     |
|    |              |            |     |
|    |              |            |     |
|    |              |            |     |
|    |              |            |     |
|    |              | k          |     |
|    | Systick      | A          | 172 |

| 12.1      | SysTick                           | 149 |
|-----------|-----------------------------------|-----|
| 12.2      |                                   | 152 |
| 13        | MPU                               | 153 |
| 13.1      | MPU                               | 154 |
| 13.2      | MPU                               | 163 |
| 14        | MDR_RST_CLK                       | 165 |
| 14.1      |                                   | 167 |
| 15        | MDR_BKP                           | 180 |
| 15.1      |                                   | 180 |
| 15.2      |                                   |     |
| 15.3      |                                   |     |
| 16        | - MDR_PORTx                       | 190 |
| 16.1      |                                   |     |
| 17        | MDR_POWER                         |     |
| 18        | MDR_EBC ( 1986 94 )               |     |
| 18.1      | , , , , , , , , , , , , , , , , , | 200 |
| 18.2      | NAND Flash-                       |     |
| 18.3      |                                   | 206 |
| 19        | MDR_EBC ( 1986 94 )               |     |
| 19.1      |                                   | 209 |
| 19.2      | NAND Flash-                       |     |
| 19.3      |                                   | 215 |
| 20        | MDR_USB                           |     |
| 20.1      | MDI_00D                           |     |
| 20.2      | USB /                             |     |
| 20.3      |                                   |     |
| 20.4      | IN (USB Device)                   |     |
| 20.5      | SETUP/OUT (USB Device)            |     |
| 20.6      | SETUP/OUT (USB Host)              |     |
| 20.7      | IN (USB Host)                     |     |
| 20.7      | SOF (USB Host)                    |     |
| 20.9      | USB                               |     |
| 21        | MDR_CAN                           |     |
| 21.1      | MDK_C/IIV                         |     |
| 21.1      |                                   |     |
| 21.2      | (Data Frame)                      |     |
| 21.4      | (Data Farie)                      |     |
| 21.5      |                                   |     |
| 21.6      | Remote Transmit Request (RTR)     |     |
| 21.7      | Remote Transmit Request (RTR)     |     |
| 21.7      |                                   |     |
| 21.9      |                                   |     |
| 21.10     |                                   |     |
| 21.10     |                                   |     |
| 21.11     |                                   |     |
| 21.12     |                                   |     |
| 21.13     | CAN                               |     |
| 21.14     | MDR TIMERx                        |     |
| 22.1      | <u>-</u>                          |     |
| 22.1 22.2 |                                   |     |
| 22.2      |                                   |     |
| 44.9      |                                   | 404 |

| 22.4 |               |          | 280 |
|------|---------------|----------|-----|
| 22.4 |               |          |     |
| 22.6 |               |          |     |
| 22.7 | ••••••        |          |     |
| 23   | MDR ADC       |          |     |
| 23.1 | MDR_ADC       |          |     |
| 23.1 |               |          |     |
| 23.3 |               |          |     |
| 23.4 |               |          |     |
| 23.4 |               |          |     |
| 23.6 |               |          |     |
| 23.7 |               |          |     |
| 23.7 |               |          |     |
| 23.8 | MDP DAC       |          |     |
| 24.1 | MDR_DAC       |          |     |
| 24.1 | ME            | OR COMP  |     |
| 25.1 |               | _        |     |
|      |               |          |     |
| 25.2 | С             |          |     |
| 25.3 | C             |          |     |
| 25.4 |               |          |     |
| 25.5 | MDD I2C       |          |     |
| 26   | _             |          |     |
| 26.1 |               |          |     |
| 26.2 |               |          |     |
| 26.3 |               |          |     |
| 26.4 |               |          |     |
| 26.5 |               |          |     |
| 26.6 | STOP          | 100      |     |
| 26.7 | MDD CCD       | I2C      |     |
| 27   | MDK_88P       | aab      |     |
| 27.1 |               | SSP      |     |
| 27.2 | SF            |          |     |
| 27.3 | <del></del> - |          |     |
| 27.4 |               | icrowire |     |
| 27.5 |               | Si       |     |
| 27.6 | 55P           |          |     |
| 27.7 |               |          |     |
| 27.8 |               |          |     |
| 28   | <del>-</del>  |          |     |
| 28.1 |               |          |     |
| 28.2 |               | IIADT    |     |
| 28.3 |               | UART     |     |
| 28.4 | HADT          | IrDA SIR |     |
| 28.5 |               |          |     |
| 28.6 | ••••          |          |     |
| 28.7 |               |          |     |
| 28.8 | ••••••        |          |     |
| 28.9 |               | MDD DMA  |     |
| 29   |               | MDR_DMA  |     |
| 29.1 |               | DMA      |     |
| 29.2 |               |          | 406 |

| 29.3 |       | 408 |
|------|-------|-----|
| 29.4 | DMA   | 411 |
| 29.5 |       | 433 |
| 29.6 | DMA   |     |
| 30   |       | 464 |
| 30.1 |       |     |
| 30.2 | (IRQ) |     |
| 30.3 |       |     |
| 30.4 |       |     |
| 30.5 |       |     |
| 30.6 |       |     |
| 30.7 |       | 471 |
| 30.8 |       | 473 |
| 31   | NVIC  | 476 |
| 31.1 |       | 477 |
| 31.2 | ,     | 482 |
| 31.3 |       | 482 |
| 31.4 |       | 483 |
| 32   |       |     |
| 32.1 |       |     |
| 33   |       | 501 |
| 33.1 |       | 501 |
| 34   |       | 506 |
| 35   |       | 509 |
| 36   |       | 511 |
| 37   |       | 515 |
| 38   |       |     |
| 39   |       | 531 |
| 40   |       | 532 |
|      |       |     |

#### 1 Введение

```
1986
                                                     1986
                                                                   1986 92QC (
                                   9x.
                                        1986 9
                                                            92QI,
1986 9x),
                                                                     RISC
                                                                                ARM
                                            Flash-
Cortex-M3,
                                 128
                                                                      32
                                                 80
                    USB
                          / (Full Speed)
                   12
                                         1,5
                                                / (Low Speed),
UART, SPI
            I2C,
                                         NAND Flash-
                                            16-
                                                                   4-
           24-
                                                               0,5
                             12-
                                        16
                                      12-
                RC
                               HSI (8 )
                                              LSI (40
                                                                                 HSE
(2...16)
            LSE (32
                                                                 PLL
                                                                                 USB
                        )
           DMA
```

1,8

3,6 .

2,2

© АО «ПКК Миландр»

## 2 Основные характеристики

,

Таблица 1 – Основные характеристики микроконтроллеров серии 1986ВЕ9х

|                         | 1986BE91T<br>1986BE94T | 1986ВЕ94Ф<br>1986ВЕ94Я | К1986ВЕ91Н4  | 1986BE92V<br>1986BE92V1<br>K1986BE92QI<br>K1986BE92QC | 1986BE93V |
|-------------------------|------------------------|------------------------|--------------|-------------------------------------------------------|-----------|
| Корпус                  | 132                    | 144                    |              | 64                                                    | 48        |
| Ядро                    |                        |                        | ARM Cortex-M | 13                                                    |           |
| ПЗУ                     |                        |                        | 128 Flas     | sh                                                    |           |
| ОЗУ                     |                        |                        | 32           |                                                       |           |
| Питание                 |                        |                        | 2,23,6       |                                                       |           |
| Частота                 |                        |                        | 80           |                                                       |           |
| USER IO                 | 96                     | 96                     | 96           | 43                                                    | 30        |
| USB                     | D                      | evice Host FS          | S ( 12 /     | ) PH                                                  | ΙΥ        |
| UART                    | 2                      | 2                      | 2            | 2                                                     | 2         |
| CAN                     | 2                      | 2                      | 2            | 2                                                     | 2         |
| SPI                     | 2                      | 2                      | 2            | 2                                                     | 1         |
| <b>I2</b> C             | 1                      | 1                      | 1            | 1                                                     | -         |
| 2 х 12-разрядных<br>АЦП | 16                     | 16                     | 16           | 8                                                     | 4         |
| ЦАП<br>12 разрядов      | 2                      | 2                      | 2            | 1                                                     | 1         |
| Компаратор              | 3                      | 3                      | 3            | 2                                                     | 2         |
| Внешняя шина            | 32                     | 32                     | 32           | 8                                                     | -         |

## 3 Структурная блок-схема микросхемы

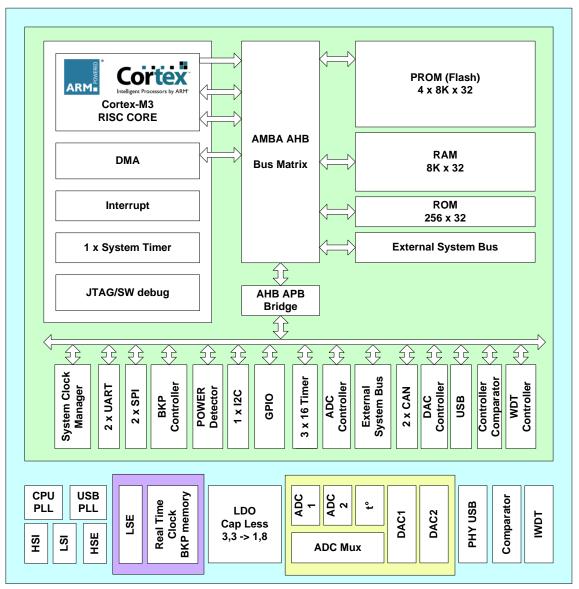



Рисунок 1. Структурная блок-схема микроконтроллера 1986ВЕ9ху

#### 4 Описание выводов

Таблица 2 – Описание выводов микроконтроллеров серии 1986BE9x в корпусах 4229.132-3, H18.64-1B, H16.48-1B, MK 5153.64-2, LQFP64

|                | Контактная |            |     | ип корпу  |                 |                |              |                  | 5, мих 3133.04-2<br>5ные функции в |                       |
|----------------|------------|------------|-----|-----------|-----------------|----------------|--------------|------------------|------------------------------------|-----------------------|
| Вывод          | площадка   | 4229.132-3 |     | H16.48-1B | MK<br>5153.64-2 | LQFP64         | Аналог.      | Основ.           | Альтер.                            | Переопр.              |
|                | кристалла  |            |     |           |                 | _ ~            | 111111111111 | o those          | 1 and 1 opt                        | Переопр               |
| PA0            | 137        | 130        | 55  | 41        | 55              | <b>рт А</b> 63 | _            | DATA0            | EXT_INT1                           | 1                     |
| PA1            | 136        | 129        | 54  | 40        | 54              | 62             | _            | DATA1            | TMR1_CH1                           | TMR2_CH1              |
| PA2            | 135        | 129        | 53  | 39        | 53              | 61             | -            | DATA1<br>DATA2   | TMR1_CH1N                          | TMR2_CH1N             |
|                |            |            |     |           | 52              |                |              |                  |                                    |                       |
| PA3            | 134        | 127        | 52  | 38        |                 | 60             | -            | DATA3            | TMR1_CH2                           | TMR2_CH2              |
| PA4            | 133        | 126        | 51  | 37        | 51              | 59             | -            | DATA4            | TMR1_CH2N                          | TMR2_CH2N             |
| PA5            | 132        | 125        | 50  | 36        | 50              | 58             | -            | DATA5            | TMR1_CH3                           | TMR2_CH3              |
| PA6            | 131        | 124        | 49  | 35        | 49              | 57             | -            | DATA6            | CAN1_TX                            | UART1_RXD             |
| PA7            | 130        | 123        | 48  | 34        | 48              | 56             | -            | DATA7            | CAN1_RX                            | UART1_TXD             |
| PA8            | 129        | 122        | -   | -         | -               | -              | -            | DATA8            | TMR1_CH3N                          | TMR2_CH3N             |
| PA9            | 128        | 121        | -   | -         | -               | -              | -            | DATA9            | TMR1_CH4                           | TMR2_CH4              |
| PA10           | 125        | 119        | -   | -         | -               | -              | -            | DATA10           | nUART1DTR                          | TMR2_CH4N             |
| PA11           | 124        | 118        | -   | -         | -               | -              | -            | DATA11           | nUART1RTS                          | TMR2_BLK              |
| PA12           | 123        | 117        | -   | -         | -               | -              | -            | DATA12           | nUART1RI                           | TMR2_ETR              |
| PA13           | 122        | 115        | -   | -         | -               | -              | -            | DATA13           | nUART1DCD                          | TMR1_CH4N             |
| PA14           | 121        | 114        | -   | -         | -               | -              | -            | DATA14           | nUART1DSR                          | TMR1_BLK              |
| PA15           | 120        | 113        | -   | -         | -               | -              | -            | DATA15           | nUART1CTS                          | TMR1_ETR              |
|                | 1          |            |     |           | По              | рт В           |              | I= . =           |                                    |                       |
| PB0            | 97         | 92         | 35  | 25        | 35              | 43             | -            | DATA16           | TMR3_CH1                           | UART1_TXD             |
| JA_TDO         |            |            |     |           |                 | _              |              |                  |                                    |                       |
| PB1            | 98         | 93         | 36  | 26        | 36              | 44             | -            | DATA17           | TMR3_CH1N                          | UART2_RXD             |
| JA_TMS         |            |            |     |           |                 |                |              |                  |                                    |                       |
| PB2            | 99         | 94         | 37  | 27        | 37              | 45             | -            | DATA18           | TMR3_CH2                           | CAN1_TX               |
| JA_TCK         | 100        | 0.5        | 20  | 20        |                 |                |              | D 4 E 4 10       | The Change                         | CANA DV               |
| PB3            | 100        | 95         | 38  | 28        | 38              | 46             | -            | DATA19           | TMR3_CH2N                          | CAN1_RX               |
| JA_TDI         | 101        | 0.6        | 20  | 20        |                 |                |              | D 4 T 4 20       | TNAD 2 DI IZ                       | TIMBA ETT             |
| PB4            | 101        | 96         | 39  | 29        | 39              | 47             | -            | DATA20           | TMR3_BLK                           | TMR3_ETR              |
| JA_TRST<br>PB5 | 107        | 102        | 42  | 32        | 42              | 50             |              | DATAGI           | LIADTI TVD                         | TMD2 CH2              |
| PB6            | 107        | 102        | 42  | 33        | 43              | 51             | -            | DATA21<br>DATA22 | UART1_TXD<br>UART1_RXD             | TMR3_CH3<br>TMR3_CH3N |
| PB7            |            |            | 43  |           |                 | 52             | -            |                  | nSIROUT1                           |                       |
|                | 109        | 104        |     | -         | 44              | 53             | -            | DATA24           |                                    | TMR3_CH4              |
| PB8            | 110        | 105        | 45  | -         | 45              |                | -            | DATA24           | COMP_OUT                           | TMR3_CH4N             |
| PB9            | 111        | 106        | 46  | -         | 46              | 54             | -            | DATA25           | nSIRIN1                            | EXT_INT4              |
| PB10           | 112        | 107        | 47  | -         | 47              | 55             | -            | DATA26           | EXT_INT2                           | nSIROUT1              |
| PB11           | 113        | 108        | -   | -         | -               | -              | -            | DATA27           | EXT_INT1                           | COMP_OUT              |
| PB12           | 114        | 109        | -   | -         | -               | -              | -            | DATA28           | SSP1_FSS                           | SSP2_FSS              |
| PB13           | 115        | 110        | -   | -         | -               | -              | -            | DATA29           | SSP1_CLK                           | SSP2_CLK              |
| PB14           | 116        | 111        | -   | -         | -               | -              | -            | DATA30           | SSP1_RXD                           | SSP2_RXD              |
| PB15           | 119        | 112        | -   | -         | -               | -              | -            | DATA31           | SSP1_TXD                           | SSP2_TXD              |
| D.C.O.         | 0.6        | 0.1        | 2.4 | 22        |                 | рт С           |              | DE A DAZA        | CCT 1                              | aaba Eaa              |
| PC0            | 96         | 91         | 34  | 23        | 34              | 42             | -            | READY*           | SCL1                               | SSP2_FSS              |
| PC1            | 95         | 90         | 33  | -         | 33              | 41             | -            | OE               | SDA1                               | SSP2_CLK              |
| PC2            | 94         | 89         | 31  | -         | 31              | 40             | -            | WE               | TMR3_CH1                           | SSP2_RXD              |
| PC3            | 93         | 88         | -   | -         | -               | -              | -            | BE0              | TMR3_CH1N                          | SSP2_TXD              |
| PC4            | 92         | 87         | -   | -         | -               | -              | -            | BE1              | TMR3_CH2                           | TMR1_CH1              |
| PC5            | 91         | 86         | -   | -         | -               | -              | -            | BE2              | TMR3_CH2N                          | TMR1_CH1N             |
| PC6            | 90         | 85         | -   | -         | -               | -              | -            | BE3              | TMR3_CH3                           | TMR1_CH2              |
| PC7            | 89         | 84         | -   | -         | -               | -              | -            | CLOCK            | TMR3_CH3N                          | TMR1_CH2N             |
| PC8            | 88         | 83         | -   | -         | -               | -              | -            | CAN1_TX          | TMR3_CH4                           | TMR1_CH3              |
| PC9            | 87         | 82         | -   | -         | -               | -              | -            | CAN1_RX          | TMR3_CH4N                          | TMR1_CH3N             |

|                | Контактная            |    | T         | ип корпу  | ca              |        | вывода        |               |           |           |
|----------------|-----------------------|----|-----------|-----------|-----------------|--------|---------------|---------------|-----------|-----------|
| Вывод          | площадка<br>кристалла |    | H18.64-1B | H16.48-1B | MK<br>5153.64-2 | LQFP64 | Аналог.       | Основ.        | Альтер.   | Переопр.  |
| PC10           | 86                    | 81 | -         | -         | -               | -      | -             | -             | TMR3_ETR  | TMR1_CH4  |
| PC11           | 85                    | 80 | -         | -         | -               | -      | -             | -             | TMR3_BLK  | TMR1_CH4N |
| PC12           | 84                    | 79 | -         | -         | -               | -      | -             | -             | EXT_INT2  | TMR1_ETR  |
| PC13           | 83                    | 78 | -         | -         | -               | -      | -             | -             | EXT_INT4  | TMR1_BLK  |
| PC14           | 82                    | 77 | -         | -         | -               | -      | -             | -             | SSP2_FSS  | CAN2_RX   |
| PC15           | 81                    | 76 | -         | -         | -               | -      | -             | -             | SSP2_RXD  | CAN2_TX   |
|                |                       |    |           |           | По              | рт D   |               |               |           |           |
| PD0<br>JB_TMS  | 70                    | 65 | 23        | 17        | 23              | 31     | EF+           | N             | UART2_RXD | TMR3_CH1  |
| PD1<br>JB_TCK  | 71                    | 66 | 24        | 18        | 24              | 32     | EF-           | _             | UART2_TXD | TMR3_CH1N |
| PD2<br>JB_TRST | 72                    | 67 | 25        | 19        | 25              | 33     | ADC2          | BUSY1         | SSP2_RXD  | TMR3_CH2  |
| PD3<br>JB_TDI  | 73                    | 68 | 26        | 20        | 26              | 34     | ADC3          | -             | SSP2_FSS  | TMR3_CH2N |
| PD4<br>JB_TDO  | 69                    | 64 | 22        | -         | 22              | 30     | ADC4          | TMR1_ETR      |           | TMR3_BLK  |
| PD5            | 74                    | 69 | 27        | -         | 27              | 35     | ADC5          | CLE           | SSP2_CLK  | TMR2_ETR  |
| PD6            | 75                    | 70 | 28        | -         | 28              | 36     | ADC6          | ALE           | SSP2_TXD  | TMR2_BLK  |
| PD7            | 68                    | 63 | 21        | -         | 21              | 29     | ADC7          | TMR1_BL<br>K  | nSIRIN2   | UART1_RXD |
| PD8            | 67                    | 62 | -         | -         | -               | -      | ADC8          | N             | TMR2_CH1  | UART1_TXD |
| PD9            | 76                    | 71 | -         | ı         | ı               | ı      | ADC9          | CAN2_TX       | TMR2_CH1N | SSP1_FSS  |
| PD10           | 66                    | 61 | -         | -         | -               | -      | ADC10         | TMR1_CH2      | TMR2_CH2  | SSP1_CLK  |
| PD11           | 65                    | 60 | -         | -         | -               | -      | ADC11         | TMR1_CH2<br>N | TMR2_CH2N | SSP1_RXD  |
| PD12           | 64                    | 59 | -         | -         | -               | -      | ADC12         | TMR1_CH3      | TMR2_CH3  | SSP1_TXD  |
| PD13           | 63                    | 58 | -         | -         | -               | -      | ADC13         | TMR1_CH3<br>N | TMR2_CH3N | CAN1_TX   |
| PD14           | 62                    | 57 | -         | -         | -               | -      | ADC14         | TMR1_CH4      | TMR2_CH4  | CAN1_RX   |
| PD15           | 61                    | 56 | -         | -         | -               | -      | ADC15         | CAN2_RX       | BUSY2     | EXT_INT3  |
|                |                       |    |           |           | По              | рт Е   |               |               |           |           |
| PE0            | 56                    | 53 | 18        | 14        | 18              | 26     | DAC2_O<br>UT  | ADDR16        | TMR2_CH1  | CAN1_RX   |
| PE1            | 55                    | 52 | 17        | -         | 17              | 25     | DAC2_R<br>EF  | ADDR17        | TMR2_CH1N | CAN1_TX   |
| PE2            | 48                    | 45 | 14        | 11        | 14              | 22     | COMP_I<br>N1  |               | TMR2_CH3  | TMR3_CH1  |
| PE3            | 47                    | 44 | 13        | 10        | 13              | 21     | COMP_I<br>N2  |               | TMR2_CH3N | TMR3_CH1N |
| PE4            | 45                    | 42 | -         | -         | -               | -      | COMP_R<br>EF+ |               | TMR2_CH4N | TMR3_CH2  |
| PE5            | 44                    | 41 | -         | -         | -               | -      | COMP_R<br>EF- |               | TMR2_BLK  | TMR3_CH2N |
| PE6            | 36                    | 33 | 8         | 6         | 8               | 16     | OSC_IN3       | ADDR22        | CAN2_RX   | TMR3_CH3  |
| PE7            | 35                    | 32 | 7         | -         | 7               | 15     | OSC_OU<br>T32 | ADDR23        | CAN2_TX   | TMR3_CH3N |
| PE8            | 46                    | 43 | -         | -         | -               | -      | N3            | ADDR24        | TMR2_CH4  | TMR3_CH4  |
| PE9            | 54                    | 51 | -         | -         | -               | -      | DAC1_O<br>UT  | ADDR25        | TMR2_CH2  | TMR3_CH4N |
| PE10           | 53                    | 50 | -         | -         | -               | -      | DAC1_R<br>EF  | ADDR26        | TMR2_CH2N | TMR3_ETR  |
| PE11           | 26                    | 23 | -         | -         | -               | -      | -             | ADDR27        | nSIRIN1   | TMR3_BLK  |
| PE12           | 21                    | 20 | _         | _         | _               | -      | _             | ADDR28        | SSP1_RXD  | UART1_RXD |

|                   | Контактная               |                          | Т              | ип корпус      | ca               |                     | Д          | ополнител            | ьные функции і | вывода    |
|-------------------|--------------------------|--------------------------|----------------|----------------|------------------|---------------------|------------|----------------------|----------------|-----------|
| Вывод             | площадка<br>кристалла    | 4229.132-3               | H18.64-1B      |                | MK<br>5153.64-2  | LQFP64              | Аналог.    | Основ.               | Альтер.        | Переопр.  |
| PE13              | 20                       | 19                       | -              | -              | -                | 1                   | -          | ADDR29               | SSP1_FSS       | UART1_TXD |
| PE14              | 43                       | 40                       | -              | -              | -                | -                   | -          | ADDR30               | TMR2_ETR       | SCL1      |
| PE15              | 19                       | 18                       | -              | -              | -                | -                   | -          | ADDR31               | EXT_INT3       | SDA1      |
|                   | ı                        | 1                        | ı              |                |                  | рт F                | T          | 1                    |                | 1         |
| PF0               | 3                        | 2                        | 58             | 44             | 58               | 2                   | -          | ADDR0                | SSP1_TXD       | UART2_RXD |
| PF1               | 4                        | 3                        | 59             | 45             | 59               | 3                   | -          | ADDR1                | SSP1_CLK       | UART2_TXD |
| PF2               | 5                        | 4                        | 60             | 46             | 60               | 4                   |            | ADDR2                | SSP1_FSS       | CAN2_RX   |
| PF3               | 6                        | 5                        | 61             | 47             | 61               | 5                   | -          | ADDR3                | SSP1_RXD       | CAN2_TX   |
| PF4<br>MODE[0]    | 7                        | 6                        | 62             | 48             | 62               | 6                   | -          | ADDR4                | -              | -         |
| PF5<br>MODE[1]    | 8                        | 7                        | 63             | 1              | 63               | 7                   | -          | ADDR5                | -              | -         |
| PF6<br>MODE[2]    | 9                        | 8                        | 64             | -              | 64               | 8                   | -          | ADDR6                | TMR1_CH1       | -         |
| PF7               | 10                       | 9                        | -              | -              | -                | -                   | -          | ADDR7                | TMR1_CH1N      | TMR3_CH1  |
| PF8               | 11                       | 10                       | -              | -              | -                | -                   | -          | ADDR8                | TMR1_CH2       | TMR3_CH1N |
| PF9               | 12                       | 11                       | -              | -              | -                | -                   | -          | ADDR9                | TMR1_CH2N      | TMR3_CH2  |
| PF10              | 13                       | 12                       | -              | -              | -                | -                   | -          | ADDR10               | TMR1_CH3       | TMR3_CH2N |
| PF11              | 14                       | 13                       | -              | -              | -                | -                   | -          | ADDR11               | TMR1_CH3N      | TMR3_ETR  |
| PF12              | 15                       | 14                       | -              | -              | -                | -                   | -          | ADDR12               | TMR1_CH4       | SSP2_FSS  |
| PF13              | 16                       | 15                       | -              | -              | -                | -                   |            | ADDR13               | TMR1_CH4N      | SSP2_CLK  |
| PF14              | 17                       | 16                       | -              | -              | -                | -                   | -          | ADDR14               | TMR1_ETR       | SSP2_RXD  |
| PF15              | 18                       | 17                       | -              | -              | -                | -                   | -          | ADDR15               | TMR1_BLK       | SSP2_TXD  |
| DECET             | 40                       | 37                       | 10             |                | истемно          | управл              | ение       |                      |                |           |
| RESET             | 40                       | 37                       | 10             | 7              | 10               | 18                  | 0 –<br>1 – |                      |                |           |
| WAKEUP            | 38                       | 35                       | 9              | -              | 9                | 17                  | 0 –<br>1 – | :                    | S<br>StandBy   | tandby    |
| STANDBY           | 34                       | 31                       | 6              | -              | 6                | 14                  | 0 –        | Standby              | StandBy        |           |
| OCC. IN           | 4.1                      | 20                       | 1.1            | 0              | 1.1              | 10                  | 1 –        | Her                  | StandBy        |           |
| OSC_IN            | 41                       | 38                       | 11             | 8              | 11               | 19                  |            | HSE                  |                |           |
| OSC_OUT           | 42                       | 39                       | 12             | 9              | 12<br>UCD        | 20                  |            | HS                   | E              |           |
| DP                | 22                       | 21                       | 1              | 2              | 1 USB 11         | <b>нтерфей</b><br>9 |            | B D+                 |                |           |
| DN                | 25                       | 22                       | 2              | 3              | 2                | 10                  |            | <u>в D</u> +<br>В D- |                |           |
| DIV               | 23                       | 22                       |                | 3              |                  | гание               | 05.        | <u> Б Б-</u>         |                |           |
| UCC               | 1,2,31,32,<br>77,78,103, | 72,73,                   | 4,29,40,<br>57 | 5,21,30,4<br>3 | 4, 29,<br>40, 57 | 1, 12,<br>38, 48    |            | 2,2                  | 23,6           |           |
| AU <sub>CC</sub>  | 104<br>59,60             | 98,99<br>55              | 20             | 16             | 20               | 28                  | 0.4.00     |                      | , Cor          | mparator  |
| AU <sub>CC1</sub> | 51,52                    | 48,49                    | 16             | 13             | 16               | 24                  | 2,43,6     | I                    | PLL 2,23,6     |           |
| BU <sub>CC</sub>  | 33                       | 30                       | 5              | -              | 5                | 13                  |            | 1                    | .83,6          |           |
| GND               | 29,30,79,<br>105,139     | 26,27,<br>74,100,<br>132 | 3,30,41,<br>56 | 4,22,31,4      | 3, 30,<br>41, 56 | 11, 39,<br>49, 64   |            |                      |                |           |
| AGND              | 57,58                    | 54                       | 19             | 15             | 19               | 27                  |            |                      |                |           |
| AGND1             | 49,50                    | 46,47                    | 15             | 12             | 15               | 23                  |            |                      |                |           |
| DUCC              | 28,80,106,<br>138        |                          |                | -              | -                | -                   |            |                      |                |           |
|                   |                          | , ,                      | Вь             | ІВОДЫ ДЛЯ      | тестиро          | вания и             | исследов   | ания                 |                |           |
| BDUCC             | 37                       | 34                       | -              | -              | -                | -                   | , ,        |                      |                |           |

|         | Контактная            |            | T         | ип корпу  | ca              |         | Дополнительные функции вывода |          |         |          |
|---------|-----------------------|------------|-----------|-----------|-----------------|---------|-------------------------------|----------|---------|----------|
| Вывод   | площадка<br>кристалла | 4229.132-3 | H18.64-1B | H16.48-1B | MK<br>5153.64-2 | LQFP64  | Аналог.                       | Основ.   | Альтер. | Переопр. |
| EXT_POR | 39                    | 36         | -         | -         | -               | -       |                               |          |         | •        |
|         |                       |            |           |           |                 |         | <b>«</b>                      | <b>»</b> |         |          |
| SHDN    | 27                    | 24         | -         | -         | -               | -       |                               |          | /       |          |
|         |                       |            |           |           |                 |         |                               | LDO.     |         |          |
|         |                       |            |           |           |                 |         |                               |          |         |          |
|         |                       |            |           |           |                 |         | <b>«</b>                      | <b>»</b> |         |          |
| JTAG_EN | 102                   | 97         | -         | -         | -               | -       |                               |          |         |          |
|         |                       |            |           |           |                 |         | <b>«</b>                      | <b>»</b> |         |          |
|         |                       |            |           |           | Не испо         | льзуютс | Я                             |          |         |          |
| NC      | 23,24,                | 116,120    | 32        | 24        | 32              | 37      |                               |          |         |          |
|         | 117,118,              |            |           |           |                 |         | <b>«</b>                      | <b>»</b> |         |          |
|         | 126,127               |            |           |           |                 |         |                               |          |         |          |

\* - 1986 94 .

Таблица 3 — Описание выводов микроконтроллеров серии 1986BE9x в корпусах МК 6109.144-A, МК 8307.144-AH3

| вывода |
|--------|
|        |
|        |
|        |
| XT_BUS |
|        |
|        |
|        |
|        |
| XT_BUS |
|        |
|        |
|        |
|        |
| XT_BUS |
|        |
|        |
|        |
|        |
| XT_BUS |
|        |
|        |
|        |
|        |
| XT_BUS |
|        |
|        |
|        |

|                 | Обозна-      | Назначение и функции вывода |                            |                                  |          |              |          |            |  |  |  |
|-----------------|--------------|-----------------------------|----------------------------|----------------------------------|----------|--------------|----------|------------|--|--|--|
| Номер<br>вывода | чение вывода | Тип функции<br>вывода       | Обозначение функции вывода | Функциональное назначение вывода |          |              |          |            |  |  |  |
| <b>A</b> 4      | PA5          |                             | /                          | 5                                |          |              |          |            |  |  |  |
|                 |              |                             | -                          | -                                |          |              |          |            |  |  |  |
|                 |              |                             | DATA5                      | 5                                | DA       | ATA[3]       | 1:0] EXT | Γ_BUS      |  |  |  |
|                 |              |                             | TMR1_CH3                   | /                                | 3        | 1            |          |            |  |  |  |
|                 |              |                             | TMR2_CH3                   | /                                | 3        | 2            |          |            |  |  |  |
| 34              | PA6          |                             | /                          | 6                                |          |              |          |            |  |  |  |
|                 |              |                             | -  -                       | -                                |          |              |          |            |  |  |  |
|                 |              |                             | DATA6                      | 6                                | DA       | ATA[3        | 1:0] EXT | Γ_BUS      |  |  |  |
|                 |              |                             | CAN1_TX                    |                                  |          | C            | AN1      |            |  |  |  |
|                 |              |                             | UART1_RXD                  |                                  | UART1    |              |          |            |  |  |  |
| C4              | PA7          |                             | /                          | 7                                |          |              |          |            |  |  |  |
|                 |              |                             | <u> </u>                   |                                  |          |              |          |            |  |  |  |
|                 |              |                             | DATA7                      | 7                                | DA       | ATA[3        | 1:0] EXT | Γ_BUS      |  |  |  |
|                 |              |                             | CAN1_RX                    |                                  |          | CA           | .N1      |            |  |  |  |
|                 |              |                             | UART1_TXD                  |                                  | UART′    | 1            |          |            |  |  |  |
| C5 PA8          |              |                             |                            | 8                                |          |              |          |            |  |  |  |
|                 |              |                             | I_                         |                                  |          |              |          |            |  |  |  |
|                 |              |                             | DATA8                      | 8                                | DA       | ATA[3]       | 1:0] EXT | ΓBUS       |  |  |  |
|                 |              |                             | TMR1_CH3N                  |                                  |          | 3            | 1        |            |  |  |  |
|                 |              |                             | TMR2_CH3N                  |                                  |          | 3            | 2        |            |  |  |  |
| A5              | PA9          |                             |                            | 9                                |          |              |          |            |  |  |  |
|                 |              |                             | -  -                       |                                  |          |              |          |            |  |  |  |
|                 |              |                             | DATA9                      | 9                                | DA       | ATA[3        | 1:0] EX7 | ΓBUS       |  |  |  |
|                 |              |                             | TMR1_CH4                   | /                                | 4        | 1            | ,        |            |  |  |  |
|                 |              |                             | TMR2_CH4                   | 1                                | 4        | 2            |          |            |  |  |  |
| 35              | PA10         |                             | /                          | 10                               | •        |              |          |            |  |  |  |
|                 |              |                             |                            | -                                |          |              |          |            |  |  |  |
|                 |              |                             | DATA10                     | 10                               | Г        | ΔΤΔΓ         | 31:01 FX | T_BUS      |  |  |  |
|                 |              |                             | nUART1DTR                  |                                  |          | // 1 1 / 1[. | J1.0] L2 | UART1      |  |  |  |
|                 |              |                             | TMR2_CH4N                  |                                  |          | 4            | 2        | UAKII      |  |  |  |
| D5              | PA11         |                             | /                          | 11                               |          |              |          |            |  |  |  |
|                 |              |                             | ,<br>                      | - 11                             |          |              |          |            |  |  |  |
|                 |              |                             | DATA11                     | 11                               | r        | ) A T A [    | 21.01 EV | T_BUS      |  |  |  |
|                 |              |                             | nUART1RTS                  | 11                               | L        | /A I A[,     | UAF      |            |  |  |  |
|                 |              |                             | TMR2_BLK                   |                                  |          |              | 2        | <b>\11</b> |  |  |  |
| <b>D</b> 6      | PA12         |                             | TWIKZ_DEK                  | 12                               |          |              |          |            |  |  |  |
| <b>7</b> 0      |              |                             | /<br>                      |                                  |          |              |          |            |  |  |  |
|                 |              |                             | DATA12                     |                                  | <u> </u> | \ A TT A 5'  | 21.03.55 | T DIIC     |  |  |  |
|                 |              |                             |                            | 12                               | L        | ATA[.        | 51:UJ EX | T_BUS      |  |  |  |
|                 |              |                             | nUART1RI                   |                                  |          |              |          |            |  |  |  |
|                 |              |                             | TMR2_ETR                   |                                  |          |              | 2        |            |  |  |  |

|                        | Обозна-         | Назначение и функции вывода          |           |                                  |                    |  |  |  |  |
|------------------------|-----------------|--------------------------------------|-----------|----------------------------------|--------------------|--|--|--|--|
| <b>Номер</b><br>вывода | чение<br>вывода | Тип функции вывода Обозначени вывода |           | Функциональное назначение вывода |                    |  |  |  |  |
| A6                     | PA13            |                                      | /         | 13                               |                    |  |  |  |  |
|                        |                 |                                      |           |                                  |                    |  |  |  |  |
|                        |                 |                                      | DATA13    | 13                               | DATA[31:0] EXT_BUS |  |  |  |  |
|                        |                 |                                      | nUART1DCD |                                  |                    |  |  |  |  |
|                        |                 |                                      | TMR1_CH4N |                                  | 4 1                |  |  |  |  |
| 6                      | PA14            |                                      |           | 14                               |                    |  |  |  |  |
|                        |                 |                                      |           |                                  |                    |  |  |  |  |
|                        |                 |                                      | DATA14    | 14                               | DATA[31:0] EXT_BUS |  |  |  |  |
|                        |                 |                                      | nUART1DSR |                                  |                    |  |  |  |  |
|                        |                 |                                      | TMR1_BLK  |                                  | 1                  |  |  |  |  |
| 6                      | PA15            |                                      | /         | 15                               |                    |  |  |  |  |
|                        |                 |                                      | -  -      |                                  |                    |  |  |  |  |
|                        |                 |                                      | DATA15    | 15                               | DATA[31:0] EXT_BUS |  |  |  |  |
|                        |                 |                                      | nUART1CTS |                                  |                    |  |  |  |  |
|                        |                 |                                      | TMR1_ETR  |                                  | 1                  |  |  |  |  |
| Іорт В                 | <u>'</u>        |                                      |           |                                  |                    |  |  |  |  |
| D11                    | PB0/            |                                      | /         | 0                                | /                  |  |  |  |  |
|                        | JA_TDO          |                                      |           | JTAG-                            |                    |  |  |  |  |
|                        |                 |                                      | DATA16    | 16                               | DATA[31:0] EXT_BUS |  |  |  |  |
|                        |                 |                                      | TMR3_CH1  | /                                | 1 3                |  |  |  |  |
|                        |                 |                                      | UART1_TXD | 1                                | UART1              |  |  |  |  |
| D12                    | PB1/            |                                      | /         | 1                                | /                  |  |  |  |  |
|                        | JA_TMS          |                                      | ,         | JTA                              | .G                 |  |  |  |  |
|                        |                 |                                      |           |                                  | _                  |  |  |  |  |
|                        |                 |                                      | DATA17    | 17                               | DATA[31:0] EXT_BUS |  |  |  |  |
|                        |                 |                                      | TMR3_CH1N |                                  | 1 3                |  |  |  |  |
|                        |                 |                                      | UART2_RXD |                                  | UART2              |  |  |  |  |
| 9                      | PB2/            |                                      | /         | 2<br>JTAG                        | /                  |  |  |  |  |
|                        | JA_TCK          |                                      | _         | JIAU                             | _                  |  |  |  |  |
|                        |                 |                                      | DATA18    | 18                               | DATA[31:0] EXT_BUS |  |  |  |  |
|                        |                 |                                      | TMR3_CH2  |                                  | 2 3                |  |  |  |  |
|                        |                 |                                      | CAN1_TX   |                                  | CAN1               |  |  |  |  |
| C10                    | PB3/            |                                      | /         | 3                                | 1                  |  |  |  |  |
|                        | JA_TDI          |                                      |           | JTAG                             |                    |  |  |  |  |
|                        |                 |                                      | - DATA10  |                                  |                    |  |  |  |  |
|                        |                 |                                      | DATA19    | 19                               | DATA[31:0] EXT_BUS |  |  |  |  |
|                        |                 |                                      | TMR3_CH2N |                                  | 2 3<br>CAN1        |  |  |  |  |
| 111                    | PB4/            |                                      | CAN1_RX   | 4                                | / CANT             |  |  |  |  |
| 11                     | JA_TRST         |                                      | 1         | 4<br>JTAG                        | 1                  |  |  |  |  |
|                        |                 |                                      | [-        |                                  |                    |  |  |  |  |
|                        |                 |                                      | DATA20    | 20                               | DATA[31:0] EXT_BUS |  |  |  |  |
|                        |                 |                                      | TMR3_BRK  |                                  | 3                  |  |  |  |  |
|                        |                 |                                      | TMR3_ETR  |                                  | 3                  |  |  |  |  |

|                 | Обозна-      | Назначение и функции вывода |                            |                                  |                    |  |  |  |
|-----------------|--------------|-----------------------------|----------------------------|----------------------------------|--------------------|--|--|--|
| Номер<br>вывода | чение вывода | Тип функции<br>вывода       | Обозначение функции вывода | Функциональное назначение вывода |                    |  |  |  |
| <b>A</b> 10     | PB5          |                             | /                          | 5                                |                    |  |  |  |
|                 |              |                             | -                          | •                                |                    |  |  |  |
|                 |              |                             | DATA21                     | 21                               | DATA[31:0] EXT_BUS |  |  |  |
|                 |              |                             | UART1_TXD                  |                                  | UART1              |  |  |  |
|                 |              |                             | TMR3_CH3                   | /                                | 3 3                |  |  |  |
| 310             | PB6          |                             | /                          | 6                                |                    |  |  |  |
|                 |              |                             | <u> </u>                   |                                  |                    |  |  |  |
|                 |              |                             | DATA22                     | 22                               | DATA[31:0] EXT_BUS |  |  |  |
|                 |              |                             | UART1_RXD                  |                                  | UART1              |  |  |  |
|                 |              |                             | TMR3_CH3N                  |                                  | 3 3                |  |  |  |
| 39              | PB7          |                             | /                          | 7                                |                    |  |  |  |
|                 |              |                             | -  -                       | •                                |                    |  |  |  |
|                 |              |                             | DATA23                     | 23                               | DATA[31:0] EXT_BUS |  |  |  |
|                 |              |                             | nSIROUT1                   |                                  | IRDA SIR ART1      |  |  |  |
|                 |              |                             | TMR3_CH4                   | /                                | 4 3                |  |  |  |
| 19              | PB8          |                             | /                          | 8                                |                    |  |  |  |
|                 |              |                             |                            |                                  |                    |  |  |  |
|                 |              |                             | DATA24                     | 24                               | DATA[31:0] EXT_BUS |  |  |  |
|                 |              |                             | COMP_OUT                   |                                  |                    |  |  |  |
|                 |              |                             | TMR3_CH4N                  |                                  | 4 3                |  |  |  |
| D8              | PB9          |                             | /                          | 9                                |                    |  |  |  |
|                 |              |                             |                            | •                                |                    |  |  |  |
|                 |              |                             | DATA25                     | 25                               | DATA[31:0] EXT_BUS |  |  |  |
|                 |              |                             | nSIRIN1                    |                                  | IRDA SIR UART1     |  |  |  |
|                 |              |                             | EXT_INT4                   |                                  |                    |  |  |  |
| C8              | PB10         |                             |                            | 10                               |                    |  |  |  |
|                 |              |                             | -  -  -                    |                                  |                    |  |  |  |
|                 |              |                             | DATA26                     | 26                               | DATA[31:0] EXT_BUS |  |  |  |
|                 |              |                             | EXT_INT2                   |                                  |                    |  |  |  |
|                 |              |                             | nSIROUT1                   |                                  | IRDA SIR UART1     |  |  |  |
| 38              | PB11         |                             |                            | 11                               |                    |  |  |  |
|                 |              |                             | T_ T_                      |                                  |                    |  |  |  |
|                 |              |                             | DATA27                     | 27                               | DATA[31:0] EXT_BUS |  |  |  |
|                 |              |                             | EXT_INT1                   |                                  | 2[21.0] 2.11_000   |  |  |  |
|                 |              |                             | COMP_OUT                   |                                  |                    |  |  |  |
| 18              | PB12         |                             |                            | 12                               |                    |  |  |  |
|                 |              |                             |                            |                                  |                    |  |  |  |
|                 |              |                             | DATA28                     | 28                               | DATA[31:0] EXT_BUS |  |  |  |
|                 |              |                             | SSP1_FSS                   | /                                | SPI1               |  |  |  |
|                 |              |                             | SSP2_FSS                   | /                                | SPI2               |  |  |  |

| Номер<br>вывода | Обозна-         | Назначение и функции вывода |                            |                                  |                          |  |  |  |
|-----------------|-----------------|-----------------------------|----------------------------|----------------------------------|--------------------------|--|--|--|
|                 | чение<br>вывода | Тип функции<br>вывода       | Обозначение функции вывода | Функциональное назначение вывода |                          |  |  |  |
| 37              | PB13            |                             |                            | / 13                             |                          |  |  |  |
|                 |                 |                             | _                          | _                                |                          |  |  |  |
|                 |                 |                             | DATA29                     | 29                               | DATA[31:0] EXT_BUS       |  |  |  |
|                 |                 |                             | SSP1_CLK                   | 1                                | SPI1                     |  |  |  |
|                 |                 |                             | SSP2_CLK                   | /                                | SPI2                     |  |  |  |
| .7              | PB14            |                             | T                          | / 14                             |                          |  |  |  |
|                 |                 |                             | -<br> DATA20               | _                                |                          |  |  |  |
|                 |                 |                             | DATA30                     | 30                               | DATA[31:0] EXT_BUS       |  |  |  |
|                 |                 |                             | SSP1_RXD                   |                                  | SPI1                     |  |  |  |
| 77              | PB15            |                             | SSP2_RXD                   | 1 45                             | SPI2                     |  |  |  |
| 27              | PB15            |                             |                            | / 15<br>I                        |                          |  |  |  |
|                 | <u></u>         |                             | DATA21                     | 31                               | DATA[21.0] EVE DUC       |  |  |  |
|                 |                 |                             | DATA31<br>SSP1_TXD         | 31                               | DATA[31:0] EXT_BUS  SPI1 |  |  |  |
|                 |                 |                             | SSP2_TXD                   |                                  | SPI2                     |  |  |  |
| Торт С          |                 |                             | 33F 2_T XD                 |                                  | JF12                     |  |  |  |
| D10             | PC0             |                             |                            | / 0                              |                          |  |  |  |
|                 |                 |                             |                            | ,                                |                          |  |  |  |
|                 |                 |                             | _                          |                                  |                          |  |  |  |
|                 |                 |                             | SCL1                       |                                  | I2C                      |  |  |  |
|                 |                 |                             | SSP2_FSS                   | /                                | SPI 2                    |  |  |  |
| E10             | PC1             |                             |                            | / 1                              | -                        |  |  |  |
|                 |                 |                             |                            | _                                |                          |  |  |  |
|                 |                 |                             | OE                         |                                  |                          |  |  |  |
|                 |                 |                             | SDA1                       | EXT_BUS                          | I2C                      |  |  |  |
|                 | <u></u>         |                             | SSP2_CLK                   | /                                | SPI2                     |  |  |  |
| E12             | PC2             |                             | 331 2_CLK                  | / 2                              | 31 1Z                    |  |  |  |
|                 |                 |                             |                            | / <u> </u>                       |                          |  |  |  |
|                 |                 |                             | WE                         |                                  |                          |  |  |  |
|                 |                 |                             | TMR3_CH1                   | EXT_BUS                          |                          |  |  |  |
|                 |                 |                             |                            | /                                | 1 3                      |  |  |  |
| E11             | PC3             |                             | SSP2_RXD                   | / 0                              | SPI2                     |  |  |  |
| 211             | PC3             |                             |                            | / 3                              |                          |  |  |  |
|                 |                 |                             | BE0                        | <del>-</del>                     | 0 32                     |  |  |  |
|                 |                 |                             |                            |                                  | EXT_BUS                  |  |  |  |
|                 |                 |                             | TMR3_CH1N                  |                                  | 1 3                      |  |  |  |
|                 |                 |                             | SSP2_TXD                   |                                  | SPI2                     |  |  |  |
| E9              | PC4             |                             | T                          | / 4                              |                          |  |  |  |
|                 |                 |                             | -<br> DE1                  | _                                |                          |  |  |  |
|                 |                 |                             | BE1                        |                                  | 1 32<br>EXT_BUS          |  |  |  |
|                 |                 |                             | TMR3_CH2                   | /                                | 2 3                      |  |  |  |
|                 |                 |                             | TMR1_CH1                   | /                                | 1 1                      |  |  |  |

|                 | Обозна-<br>чение<br>вывода | Назначение и функции вывода |                            |       |              |         |             |  |
|-----------------|----------------------------|-----------------------------|----------------------------|-------|--------------|---------|-------------|--|
| Номер<br>вывода |                            | Тип функции<br>вывода       | Обозначение функции вывода | Функц | циональное і | іазначе | ение вывода |  |
| F9              |                            |                             |                            |       |              |         |             |  |
|                 |                            |                             | BE2                        |       | EXT_BUS      | 2 32    |             |  |
|                 |                            |                             | TMR3_CH2N                  |       | EA1_BUS      | 2       | 3           |  |
| 71.0            | DG (                       |                             | TMR1_CH1N                  |       |              | 1       | 1           |  |
| F12             | PC6                        |                             | /<br> -<br> -              | -     |              |         |             |  |
|                 | ••••                       |                             | BE3                        |       | EXT_BUS      | 3 32    |             |  |
|                 |                            |                             | TMR3_CH3                   | /     | 3            | 3       |             |  |
|                 |                            |                             | TMR1_CH2                   | 1     | 2            | 1       |             |  |
| F11             | PC7                        |                             | 1                          | 7     |              |         |             |  |
|                 |                            |                             |                            | -     |              |         |             |  |
|                 |                            |                             | CLOCK                      |       | EX           | T_BUS   | 3           |  |
|                 |                            |                             | TMR3_CH3N                  |       |              | 3       | 3           |  |
|                 |                            |                             | TMR1_CH2N                  |       |              | 2       | 1           |  |
| F10             | PC8                        |                             | 1                          | 8     |              |         |             |  |
|                 |                            |                             | -  -                       | _     |              |         |             |  |
|                 |                            |                             | CAN1_TX                    |       |              | С       | AN1         |  |
|                 | <br>                       |                             | TMR3_CH4                   | /     | 4            | 3       |             |  |
|                 |                            |                             | TMR1_CH3                   | 1     | 3            | 1       |             |  |
| G10             | PC9                        |                             | /                          | 9     |              |         |             |  |
|                 |                            |                             | [ <u> </u>                 | _     |              |         |             |  |
|                 |                            |                             | CAN1_RX                    |       |              | CA      | .N1         |  |
|                 |                            |                             | TMR3_CH4N                  |       |              | 4       | 3           |  |
|                 |                            |                             | TMR1_CH3N                  |       |              | 3       | 1           |  |
| G12             | PC10                       |                             | 1                          | 10    |              |         |             |  |
|                 |                            |                             | -  -                       | -     |              |         |             |  |
|                 |                            |                             | -  -                       | -     |              |         |             |  |
|                 |                            |                             | TMR3_ETR                   |       |              |         | 3           |  |
|                 |                            |                             | TMR1_CH4                   | /     | 4            | 1       |             |  |
| G11             | PC11                       |                             | /                          | 11    |              |         |             |  |
|                 |                            |                             | -  -                       | _     |              |         |             |  |
|                 |                            |                             | -  -                       | _     |              |         |             |  |
|                 |                            |                             | TMR3_BLK                   |       |              |         | 3           |  |
|                 |                            |                             | TMR1_CH4N                  |       |              | 4       | 1           |  |
| G9              | PC12                       |                             | /                          | 12    |              |         |             |  |
|                 |                            |                             | -  -                       | _     |              |         |             |  |
|                 |                            |                             |                            | _     |              |         |             |  |
|                 |                            |                             | EXT_INT2                   |       |              |         |             |  |
|                 |                            |                             | TMR1_ETR                   |       |              |         | 1           |  |

|                        | Обозна-        | Назначение и функции вывода |                            |                                  |  |  |  |  |
|------------------------|----------------|-----------------------------|----------------------------|----------------------------------|--|--|--|--|
| <b>Номер</b><br>вывода | чение вывода   | Тип функции<br>вывода       | Обозначение функции вывода | Функциональное назначение вывода |  |  |  |  |
| H12                    | PC13           |                             | J DELEGAL                  | / 13                             |  |  |  |  |
|                        |                |                             | _                          | _                                |  |  |  |  |
|                        |                |                             | _                          | _                                |  |  |  |  |
|                        |                |                             | EXT_INT4                   |                                  |  |  |  |  |
|                        |                |                             | TMR1_BLK                   | 1                                |  |  |  |  |
| H11                    | PC14           |                             | ,                          | / 14                             |  |  |  |  |
|                        |                |                             | _                          | _                                |  |  |  |  |
|                        |                |                             | _                          | _                                |  |  |  |  |
|                        |                |                             | SSP2_FSS                   | / SPI2                           |  |  |  |  |
|                        |                |                             | CAN2_RX                    | CAN2                             |  |  |  |  |
| H10                    | PC15           |                             |                            | / 15                             |  |  |  |  |
|                        |                |                             | -                          |                                  |  |  |  |  |
|                        |                |                             | -                          |                                  |  |  |  |  |
|                        |                |                             | SSP2_RXD                   | SPI2                             |  |  |  |  |
|                        |                |                             | CAN2_TX                    | CAN2                             |  |  |  |  |
| Порт D                 | DD0/           |                             |                            | / 0 D/                           |  |  |  |  |
| L11                    | PD0/<br>JB_TMS |                             | ı                          | / 0 D/<br>JTAG                   |  |  |  |  |
|                        | JD_114IS       |                             | ADC0_REF+                  | /                                |  |  |  |  |
|                        |                |                             | TMR1_CH1N                  | 1 1                              |  |  |  |  |
|                        |                |                             | UART2_RXD                  | UART2                            |  |  |  |  |
|                        |                |                             | TMR3_CH1                   | / 1 3                            |  |  |  |  |
| M11                    | PD1/           |                             | 111110_0111                | / 1 D/                           |  |  |  |  |
|                        | JB_TCK         |                             | LADGI DEE                  | JTAG /                           |  |  |  |  |
|                        |                |                             | ADC1_REF-                  | 1                                |  |  |  |  |
|                        |                |                             | TMR1_CH1                   | / 1 1                            |  |  |  |  |
|                        | 30.11          |                             | UART2_TXD                  | UART2                            |  |  |  |  |
|                        |                |                             | TMR3_CH1N                  | 1 3                              |  |  |  |  |
| L12                    | PD2/           |                             |                            | / 2 D/<br>JTAG                   |  |  |  |  |
|                        | JB_TRST        |                             | ADC2                       | 2                                |  |  |  |  |
|                        |                |                             | BUSY1                      |                                  |  |  |  |  |
|                        |                |                             |                            | EXT_BUS                          |  |  |  |  |
|                        |                |                             | SSP2_RXD                   | SPI2                             |  |  |  |  |
| M12                    | PD3/           |                             | TMR3_CH2                   | / 2 3<br>/ 3 D/                  |  |  |  |  |
| 1 <b>v1</b> 1 ∠        | JB_TDI         |                             |                            | JTAG D/                          |  |  |  |  |
|                        | _              |                             | ADC3                       | 3                                |  |  |  |  |
|                        |                |                             | _                          | _                                |  |  |  |  |
|                        |                |                             | SSP2_FSS                   | / SPI2                           |  |  |  |  |
|                        |                |                             | TMR3_CH2N                  | 3 2                              |  |  |  |  |
| M10                    | PD4/           |                             |                            | / 4 D/<br>JTAG-                  |  |  |  |  |
|                        | JB_TDO         |                             | ADC4                       | 4                                |  |  |  |  |
|                        |                |                             |                            |                                  |  |  |  |  |
|                        |                |                             | TMR1_ETR                   | 1                                |  |  |  |  |
|                        |                |                             | nSIROUT2                   | IRDA SIR UART2                   |  |  |  |  |

|                 | Обозна-<br>чение<br>вывода | Назначение и функции вывода |                                        |                                  |      |         |      |  |
|-----------------|----------------------------|-----------------------------|----------------------------------------|----------------------------------|------|---------|------|--|
| Номер<br>вывода |                            | Тип функции<br>вывода       | Обозначение функции вывода             | Функциональное назначение вывода |      |         |      |  |
| K12             | PD5                        |                             |                                        | / 5                              | D    |         |      |  |
|                 |                            |                             | ADC5                                   |                                  | 5    |         |      |  |
|                 |                            |                             | CLE                                    | EXT_BUS                          |      |         |      |  |
|                 |                            |                             | SSP2_CLK                               | /                                |      | SPI2    | 2    |  |
|                 |                            |                             | TMR2_ETR                               | -                                |      |         | 2    |  |
| K11             | PD6                        |                             |                                        | / 6                              | D    |         |      |  |
|                 |                            |                             | ADC6                                   |                                  | 6    |         |      |  |
|                 |                            |                             | ALE                                    | EXT_BUS                          |      |         |      |  |
|                 |                            |                             | SSP2_TXD                               |                                  | SPL  | 2       |      |  |
|                 |                            |                             | TMR2_BLK                               |                                  |      |         | 2    |  |
| L10             | PD7                        |                             |                                        | / 7                              | D    |         |      |  |
|                 |                            |                             | ADC7                                   |                                  | 7    |         |      |  |
|                 |                            |                             | TMR1_BLK                               |                                  |      |         | 1    |  |
|                 |                            |                             | nSIRIN2                                |                                  | IRDA | SIR UAI | RT2  |  |
|                 |                            |                             | UART1_RXD                              |                                  | UAR  | T1      |      |  |
| <b>K</b> 10     | PD8                        |                             |                                        | / 8                              | D    |         |      |  |
|                 |                            |                             | ADC8                                   |                                  | 8    |         |      |  |
|                 |                            |                             | TMR1_CH4N                              |                                  |      | 4       | 1    |  |
|                 |                            |                             | TMR2_CH1                               | 1                                | 1    | 2       |      |  |
|                 |                            |                             | UART1_TXD                              |                                  | UA   | RT1     |      |  |
| 10              | PD9                        |                             |                                        | / 9                              | D    |         |      |  |
|                 |                            |                             | ADC9                                   |                                  | 9    |         |      |  |
|                 |                            |                             | CAN2_TX                                |                                  |      | (       | CAN2 |  |
|                 |                            |                             | TMR2_CH1N                              |                                  |      | 1       | 2    |  |
|                 |                            |                             | SSP1_FSS                               | /                                |      | SPI1    |      |  |
| 9               | PD10                       |                             |                                        | / 10                             | D    |         |      |  |
|                 |                            |                             | ADC10                                  |                                  | 10   |         |      |  |
|                 |                            |                             | TMR1_CH2                               | /                                | 2    | 1       |      |  |
|                 |                            |                             | TMR2_CH2                               | /                                | 2    | 2       |      |  |
|                 |                            |                             | SSP1_CLK                               | /                                |      | SPI 1   |      |  |
| М9              | PD11                       |                             | ······································ | / 11                             | D    |         |      |  |
|                 |                            |                             | ADC11                                  |                                  | 11   |         |      |  |
|                 |                            |                             | TMR1_CH2N                              |                                  |      | 2       | 1    |  |
|                 |                            |                             | TMR2_CH2N                              |                                  |      | 2       | 2    |  |
|                 |                            |                             | SSP1_RXD                               |                                  | SPI1 |         |      |  |
| _9              | PD12                       |                             |                                        | / 12                             | D    |         |      |  |
|                 |                            |                             | ADC12                                  |                                  | 12   |         |      |  |
|                 |                            |                             | TMR1_CH3                               | /                                | 3    | 1       |      |  |
|                 |                            |                             | TMR2_CH3                               | /                                | 3    | 2       |      |  |
|                 |                            |                             | SSP1_TXD                               |                                  | SPI  | 1       |      |  |

| II.             | Обозна-<br>чение<br>вывода<br>PD13 | Назначение и функции вывода |                            |          |                                  |        |               |  |  |
|-----------------|------------------------------------|-----------------------------|----------------------------|----------|----------------------------------|--------|---------------|--|--|
| Номер<br>вывода |                                    | Тип функции<br>вывода       | Обозначение функции вывода | Функі    | Функциональное назначение вывода |        |               |  |  |
| K9              |                                    |                             | -71                        | / 13     | D                                |        |               |  |  |
|                 |                                    |                             | ADC13                      |          | 13                               |        |               |  |  |
|                 |                                    |                             | TMR1_CH3N                  |          |                                  | 3      | 1             |  |  |
|                 |                                    |                             | TMR2_CH3N                  |          |                                  | 3      | 2             |  |  |
|                 |                                    |                             | CAN1_TX                    |          |                                  | (      | CAN1          |  |  |
| ζ8              | PD14                               |                             |                            | / 14     | D                                |        |               |  |  |
|                 |                                    |                             | ADC14                      |          | 14                               |        |               |  |  |
|                 |                                    |                             | TMR1_CH4                   | /        | 4                                | 1      |               |  |  |
|                 | ļ                                  |                             | TMR2_CH4                   | /        | 4                                | 2      |               |  |  |
|                 |                                    |                             | CAN1_RX                    |          |                                  | CA     | N1            |  |  |
| M8              | PD15                               |                             | 1                          | / 15     | D                                |        |               |  |  |
|                 | ļ                                  |                             | ADC15                      |          | 15                               |        |               |  |  |
|                 |                                    |                             | CAN2_RX                    |          |                                  | C/     | 4N2           |  |  |
|                 |                                    |                             | BUSY2                      |          |                                  |        |               |  |  |
|                 |                                    |                             | EVT INT2                   | EXT_BUS  |                                  |        |               |  |  |
| T F             |                                    |                             | EXT_INT3                   |          |                                  |        |               |  |  |
| Порт Е          | PE0                                |                             |                            | / 0      |                                  |        |               |  |  |
| L7              | PEU                                |                             | In . ca ove                | / 0<br>T | Е                                |        |               |  |  |
|                 |                                    |                             | DAC2_OUT                   | 40       |                                  | 2      |               |  |  |
|                 |                                    |                             | ADDR16                     | 16       |                                  |        |               |  |  |
|                 |                                    |                             | TMR2_CH1                   | 1        | 1                                | 2      |               |  |  |
| 7.5             | DE1                                |                             | CAN1_RX                    | <u> </u> |                                  | C/     | AN1           |  |  |
| <b>Κ</b> 7      | PE1                                |                             |                            | / 1      | Е                                |        |               |  |  |
|                 |                                    |                             | DAC2_REF                   |          |                                  | 2      |               |  |  |
|                 |                                    |                             | ADDR17                     | 17       |                                  |        | 31:0] EXT_BUS |  |  |
|                 |                                    |                             | TMR2_CH1N                  |          |                                  | 1      | 2             |  |  |
|                 |                                    |                             | CAN1_TX                    | <u> </u> |                                  | (      | CAN1          |  |  |
| L5              | PE2                                |                             |                            | / 2      | Е                                |        |               |  |  |
|                 |                                    |                             | COMP_IN1                   | 1        |                                  |        |               |  |  |
|                 |                                    |                             | ADDR18                     | 18       |                                  |        | 31:0] EXT_BUS |  |  |
|                 |                                    |                             | TMR2_CH3                   | /        | 3                                | 2      |               |  |  |
|                 |                                    |                             | TMR3_CH1                   | /        | 1                                | 3      |               |  |  |
| <b>K</b> 5      | PE3                                |                             | ·······                    | / 3      | Е                                |        |               |  |  |
|                 |                                    |                             | COMP_IN2                   | 2        |                                  |        |               |  |  |
|                 |                                    |                             | ADDR19                     | 19       |                                  |        |               |  |  |
|                 | [                                  |                             | TMR2_CH3N                  |          |                                  | 3      | 2             |  |  |
|                 |                                    |                             | TMR3_CH1N                  |          |                                  | 1      | 3             |  |  |
| M4              | PE4                                |                             |                            | / 4      | Е                                |        |               |  |  |
|                 |                                    |                             | COMP_REF+                  |          |                                  |        |               |  |  |
|                 | [                                  |                             | ADDR20                     | 20       |                                  | ADDR [ | 31:0] EXT_BUS |  |  |
|                 |                                    |                             | TMR2_CH4N                  |          |                                  | 4      | 2             |  |  |
|                 |                                    |                             | TMR3_CH2                   | /        | 2                                | 3      |               |  |  |

|                 | Обозна-      | Назначение и функции вывода |                            |     |          |                       |  |  |  |
|-----------------|--------------|-----------------------------|----------------------------|-----|----------|-----------------------|--|--|--|
| Номер<br>вывода | чение вывода | Тип функции<br>вывода       | Обозначение функции вывода | Фун | кциональ | ное назначение вывода |  |  |  |
| L4              | PE5          |                             | ,                          | / 5 | Е        |                       |  |  |  |
|                 |              |                             | COMP_REF-                  |     |          |                       |  |  |  |
|                 |              |                             | ADDR21                     | 21  |          | ADDR [31:0] EXT_BUS   |  |  |  |
|                 |              |                             | TMR2_BLK                   |     |          | 2                     |  |  |  |
|                 |              |                             | TMR3_CH2N                  |     |          | 2 3                   |  |  |  |
| L1              | PE6          |                             | ,                          | / 6 | Е        |                       |  |  |  |
|                 |              |                             | OSC_IN32                   |     | 32       | 2                     |  |  |  |
|                 | <br>         |                             | ADDR22                     | 22  |          | ADDR [31:0] EXT_BUS   |  |  |  |
|                 |              |                             | CAN2_RX                    |     |          | CAN2                  |  |  |  |
|                 |              |                             | TMR3_CH3                   | /   | 3        | 3                     |  |  |  |
| L2              | PE7          |                             |                            | / 7 | Е        |                       |  |  |  |
|                 |              |                             | OSC_OUT32                  |     | 3        | 32                    |  |  |  |
|                 |              |                             | ADDR23                     | 23  |          | ADDR [31:0] EXT_BUS   |  |  |  |
|                 |              |                             | CAN2_TX                    |     |          | CAN2                  |  |  |  |
|                 |              |                             | TMR3_CH3N                  |     |          | 3 3                   |  |  |  |
| J5              | PE8          |                             |                            | / 8 | E        |                       |  |  |  |
|                 |              |                             | COMP_IN3                   | 3   |          |                       |  |  |  |
|                 |              |                             | ADDR24                     | 24  |          | ADDR [31:0] EXT_BUS   |  |  |  |
|                 |              |                             | TMR2_CH4                   | /   | 4        |                       |  |  |  |
|                 |              |                             | TMR3_CH4                   | /   | 4        |                       |  |  |  |
| K6              | PE9          |                             |                            | / 9 | Е        |                       |  |  |  |
|                 |              |                             | DAC1_OUT                   |     |          | 1                     |  |  |  |
|                 |              |                             | ADDR25                     | 25  |          | ADDR [31:0] EXT_BUS   |  |  |  |
|                 |              |                             | TMR2_CH2                   | /   | 2        |                       |  |  |  |
|                 |              |                             | TMR3_CH4N                  |     |          | 4                     |  |  |  |
| MC              | DE 10        |                             |                            | 3   |          |                       |  |  |  |
| M6              | PE10         |                             | /<br>  D. G. DEE           | 10  | Е        | 4                     |  |  |  |
|                 |              |                             | DAC1_REF<br>ADDR26         |     |          | 1                     |  |  |  |
|                 |              |                             | TMR2_CH2N                  | 26  |          | ADDR [31:0] EXT_BUS   |  |  |  |
|                 |              |                             | TMR3_ETR                   |     |          | 2 2                   |  |  |  |
|                 |              |                             | IMIK3_EIK                  | 3   | }        |                       |  |  |  |
| H3              | PE11         |                             | /                          | 11  | Е        |                       |  |  |  |
|                 |              |                             | _                          | _   |          |                       |  |  |  |
|                 |              |                             | ADDR27                     | 27  |          | ADDR [31:0] EXT_BUS   |  |  |  |
|                 |              |                             | nSIRIN1                    |     | IRI      | DA SIR UART1          |  |  |  |
|                 | ****         |                             | TMR3_BRK                   |     |          | 3                     |  |  |  |
| H4              | PE12         |                             | /                          | 12  | Е        |                       |  |  |  |
|                 |              |                             | -                          | _   |          |                       |  |  |  |
|                 |              |                             | ADDR28                     | 28  |          | ADDR [31:0] EXT_BUS   |  |  |  |
|                 |              |                             | SSP1_RXD                   |     | SPI      | 1                     |  |  |  |
|                 |              |                             | UART1_RXD                  |     | IJA      | .RT1                  |  |  |  |

|                      | Обозна-         | Назначение и функции вывода |                            |           |                              |  |  |  |
|----------------------|-----------------|-----------------------------|----------------------------|-----------|------------------------------|--|--|--|
| Номер<br>вывода      | чение вывода    | Тип функции<br>вывода       | Обозначение функции вывода | Функі     | циональное назначение вывода |  |  |  |
| G4                   | PE13            |                             |                            | / 13      | E                            |  |  |  |
|                      |                 |                             | _                          | _         |                              |  |  |  |
|                      |                 |                             | ADDR29                     | 29        | ADDR [31:0] EXT_BUS          |  |  |  |
|                      |                 |                             | SSP1_FSS                   | 1         | SPI1                         |  |  |  |
|                      |                 |                             | UART1_TXD                  |           | UART1                        |  |  |  |
| ζ4                   | PE14            |                             |                            | / 14      | E                            |  |  |  |
|                      |                 |                             |                            | _         |                              |  |  |  |
|                      |                 |                             | ADDR30                     | 30        | ADDR [31:0] EXT_BUS          |  |  |  |
|                      |                 |                             | TMR2_ETR                   |           | 2                            |  |  |  |
| G1                   | PE15            |                             | SCL1                       | / 45      | I2C<br>E                     |  |  |  |
| J1                   | PEIS            |                             |                            | / 15<br>I | E                            |  |  |  |
|                      |                 |                             | ADDR31                     | 31        |                              |  |  |  |
|                      |                 |                             | EXT_INT3                   | <b>्</b>  |                              |  |  |  |
|                      |                 |                             | SDA1                       | /         | I2C                          |  |  |  |
| Торт <b>F</b>        |                 |                             | SDAT                       | /         | 120                          |  |  |  |
| 10 <b>p: 1</b><br>C1 | PF0             |                             |                            | / 0       | F                            |  |  |  |
|                      |                 |                             |                            | /         | ı                            |  |  |  |
|                      |                 |                             | ADDR0                      | 0         | ADDR [31:0] EXT_BUS          |  |  |  |
|                      |                 |                             | SSP1_TXD                   |           | SPI1                         |  |  |  |
|                      |                 |                             | UART2_RXD                  |           | UART2                        |  |  |  |
| C2                   | PF1             |                             |                            | / 1       | F                            |  |  |  |
|                      |                 |                             |                            | _         |                              |  |  |  |
|                      |                 |                             | ADDR1                      | 1         | ADDR [31:0] EXT_BUS          |  |  |  |
|                      |                 |                             | SSP1_CLK                   | /         | SPI1                         |  |  |  |
|                      |                 |                             | UART2_TXD                  |           | UART2                        |  |  |  |
| <b>)</b> 3           | PF2             |                             |                            | / 2       | F                            |  |  |  |
|                      |                 |                             | _                          | _         |                              |  |  |  |
|                      |                 |                             | ADDR2                      | 2         | ADDR [31:0] EXT_BUS          |  |  |  |
|                      |                 |                             | SSP1_FSS                   | /         | SPI1                         |  |  |  |
|                      |                 |                             | CAN2_RX                    |           | CAN2                         |  |  |  |
| 02                   | PF3             |                             |                            | / 3       | F                            |  |  |  |
|                      |                 |                             | _                          |           |                              |  |  |  |
|                      | <u></u>         |                             | ADDR3                      | 3         | ADDR [31:0] EXT_BUS          |  |  |  |
|                      | ļ               |                             | SSP1_RXD                   |           | SPI1                         |  |  |  |
|                      | DT//            |                             | CAN2_TX                    |           | CAN2                         |  |  |  |
| 01                   | PF4/<br>MODE[0] |                             |                            | / 4       | F/                           |  |  |  |
|                      | MODE[0]         |                             |                            | _         |                              |  |  |  |
|                      |                 |                             | ADDR4                      | 4         | ADDR [31:0] EXT_BUS          |  |  |  |
|                      |                 |                             | _                          | _         |                              |  |  |  |
|                      |                 |                             |                            | _         |                              |  |  |  |

|                 | Обозна-<br>чение<br>вывода | Назначение и функции вывода |                                        |                                  |    |                      |  |  |  |
|-----------------|----------------------------|-----------------------------|----------------------------------------|----------------------------------|----|----------------------|--|--|--|
| Номер<br>вывода |                            | Тип функции<br>вывода       | Обозначение функции вывода             | Функциональное назначение вывода |    |                      |  |  |  |
| E4              | PF5/                       |                             | ,                                      | 5                                | F/ |                      |  |  |  |
|                 | MODE[1]                    |                             | 1_                                     | _                                |    |                      |  |  |  |
|                 |                            |                             | ADDR5                                  | 5                                |    | ADDR [31:0] EXT_BUS  |  |  |  |
|                 |                            |                             | _                                      | _                                |    |                      |  |  |  |
|                 |                            |                             | _                                      | _                                |    |                      |  |  |  |
| E3              | PF6/                       |                             |                                        | / 6                              | F/ |                      |  |  |  |
|                 | MODE[2]                    |                             | Ī                                      | _                                |    |                      |  |  |  |
|                 |                            |                             | ADDR6                                  | 6                                |    | ADDR [31:0] EXT_BUS  |  |  |  |
|                 |                            |                             | TMR1_CH1                               | /                                | 1  | 1                    |  |  |  |
|                 |                            |                             | _                                      |                                  |    | I                    |  |  |  |
| E2              | PF7                        |                             |                                        | / 7                              | F  |                      |  |  |  |
|                 |                            |                             | _                                      | _                                |    |                      |  |  |  |
|                 |                            |                             | ADDR7                                  | 7                                |    | ADDR [31:0] EXT_BUS  |  |  |  |
|                 |                            |                             | TMR1_CH1N                              |                                  |    | 1 1                  |  |  |  |
|                 |                            |                             | TMR3_CH1                               | /                                | 1  | 3                    |  |  |  |
| E1              | PF8                        |                             |                                        | / 8                              | F  |                      |  |  |  |
|                 |                            |                             | _                                      | _                                |    |                      |  |  |  |
|                 |                            |                             | ADDR8                                  | 8                                |    | ADDR [31:0] EXT_BUS  |  |  |  |
|                 |                            |                             | TMR1_CH2                               | 1                                | 2  | 1                    |  |  |  |
|                 |                            |                             | TMR3_CH1N                              |                                  |    | 1 3                  |  |  |  |
| E5              | PF9                        |                             | ······································ | / 9                              | F  |                      |  |  |  |
|                 |                            |                             | _                                      | _                                |    | ADDD [21 0] FIVE DUG |  |  |  |
|                 |                            |                             | ADDR9                                  | 9                                |    | ADDR [31:0] EXT_BUS  |  |  |  |
|                 |                            |                             | TMR1_CH2N                              |                                  |    | 2 1                  |  |  |  |
| F4              | PF10                       |                             | TMR3_CH2                               | / 10                             | 2  | 3                    |  |  |  |
| Γ4              | FFIU                       |                             | /                                      |                                  | F  |                      |  |  |  |
|                 |                            |                             | ADDR10                                 | _<br>10                          |    | ADDR [31:0] EXT_BUS  |  |  |  |
|                 |                            |                             | TMR1_CH3                               | /                                | 3  |                      |  |  |  |
|                 |                            |                             | TMR3_CH2N                              | /                                | 3  | 2 3                  |  |  |  |
| F2              | PF11                       |                             |                                        |                                  | F  |                      |  |  |  |
|                 |                            |                             | i I –                                  | _                                | •  |                      |  |  |  |
|                 |                            |                             | ADDR11                                 | 11                               |    | ADDR [31:0] EXT_BUS  |  |  |  |
|                 |                            |                             | TMR1_CH3N                              |                                  |    | 3 1                  |  |  |  |
|                 |                            |                             | TMR3_ETR                               |                                  |    | 3                    |  |  |  |
| F1              | PF12                       |                             | /                                      | 12                               | F  |                      |  |  |  |
|                 |                            |                             | _                                      | _                                |    |                      |  |  |  |
|                 |                            |                             | ADDR12                                 | 12                               |    | ADDR [31:0] EXT_BUS  |  |  |  |
|                 |                            |                             | TMR1_CH4                               | /                                | 4  | 1                    |  |  |  |
|                 |                            |                             | SSP2_FSS                               | /                                |    | SPI2                 |  |  |  |

|                                      | Обозна-                               | Назначение и функции вывода |                            |                                  |      |                     |  |  |
|--------------------------------------|---------------------------------------|-----------------------------|----------------------------|----------------------------------|------|---------------------|--|--|
| Номер<br>вывода                      | чение вывода                          | Тип функции<br>вывода       | Обозначение функции вывода | Функциональное назначение вывода |      |                     |  |  |
| F3                                   | PF13                                  |                             | /                          | 13                               | F    |                     |  |  |
|                                      | ****                                  |                             | <b> </b>                   | _                                |      |                     |  |  |
|                                      |                                       |                             | ADDR13                     | 13                               |      | ADDR [31:0] EXT_BUS |  |  |
|                                      |                                       |                             | TMR1_CH4N                  |                                  |      | 4 1                 |  |  |
|                                      |                                       |                             | SSP2_CLK                   | /                                |      | SPI2                |  |  |
| G3                                   | PF14                                  |                             | /                          | 14                               | F    |                     |  |  |
|                                      |                                       |                             | I–                         | _                                |      |                     |  |  |
|                                      |                                       |                             | ADDR14                     | 14                               |      | ADDR [31:0] EXT_BUS |  |  |
|                                      |                                       |                             | TMR1_ETR                   |                                  |      | 1                   |  |  |
|                                      |                                       |                             | SSP2_RXD                   |                                  | SPI2 |                     |  |  |
| G2                                   | PF15                                  |                             | /                          | 15                               | F    | •                   |  |  |
|                                      | -                                     |                             | T_ T                       | _                                | •    |                     |  |  |
|                                      |                                       |                             | ADDR15                     | 15                               |      | ADDR [31:0] EXT_BUS |  |  |
|                                      |                                       |                             | TMR1_BLK                   | 10                               |      | 1                   |  |  |
|                                      |                                       |                             | SSP2_TXD                   |                                  | SP   | _                   |  |  |
| C                                    |                                       |                             | 551 2_1 AD                 |                                  | OF I | 1 <b>-</b>          |  |  |
|                                      | ое управлени                          | ие                          |                            |                                  |      |                     |  |  |
| M1                                   | RESET                                 |                             | ~                          | 11                               |      |                     |  |  |
| M2                                   | WAKEUP                                |                             | Star                       | ndby                             |      |                     |  |  |
| K1                                   | STANDBY                               | Standby                     |                            |                                  |      |                     |  |  |
| M3                                   | OSC_IN                                | HSE                         |                            |                                  |      |                     |  |  |
| L3                                   | OSC_OUT                               | HSE                         | <b>=</b>                   |                                  |      |                     |  |  |
| USB инт                              | ерфейс                                |                             |                            |                                  |      |                     |  |  |
| H2                                   | DP                                    | USB D+                      |                            |                                  |      |                     |  |  |
| H1                                   | DN                                    | USB D-                      |                            |                                  |      |                     |  |  |
| Питание                              | · · · · · · · · · · · · · · · · · · · |                             |                            |                                  |      |                     |  |  |
| A1, B1,                              | Ucc                                   | (2,2-3,6)                   |                            |                                  |      |                     |  |  |
| B11, B12,                            |                                       | (-,- 3,0)                   |                            |                                  |      |                     |  |  |
| J4, J11,                             |                                       |                             |                            |                                  |      |                     |  |  |
| J12, K3                              |                                       |                             |                            |                                  |      |                     |  |  |
| J8, L8                               | AUcc                                  | (                           |                            | U )                              |      |                     |  |  |
| J6, L6                               | AUcc1                                 | (                           |                            | U )                              |      |                     |  |  |
| K2                                   | BUcc                                  | (1                          | ,8 - 3,6)                  |                                  |      |                     |  |  |
| J1                                   | GND                                   |                             |                            |                                  |      |                     |  |  |
| J7, M7                               | AGND                                  |                             |                            |                                  |      |                     |  |  |
| H5, M5                               | AGND1                                 |                             |                            |                                  |      |                     |  |  |
| E6, E7, F5-<br>F8, G5-G8,<br>H6, H7, | GND_EXP                               |                             |                            |                                  |      |                     |  |  |
|                                      | ля тестирова                          | ния                         |                            |                                  |      |                     |  |  |
| A2, A11,<br>H9, J2                   | DUcc                                  |                             | 1,:                        | 3 .                              |      |                     |  |  |
| J3                                   | SHDN                                  |                             | /                          |                                  | «    | LDO.<br>»           |  |  |

|                        | Обозна-<br>чение<br>вывода | Назначение и функции вывода |                            |      |                |                   |  |  |  |
|------------------------|----------------------------|-----------------------------|----------------------------|------|----------------|-------------------|--|--|--|
| Номер<br>вывода        |                            | Тип функции<br>вывода       | Обозначение функции вывода |      | Функциональное | назначение вывода |  |  |  |
| C12                    | JTAG_EN                    |                             | /                          | TAP- | «              | »                 |  |  |  |
| Не исполь              | зуются                     |                             |                            |      |                |                   |  |  |  |
| A12, C9,<br>D7, E8, H8 | NC                         |                             |                            |      | «              | »                 |  |  |  |

# 4.1 Диаграммы расположения выводов в корпусах с планарным расположением выводов

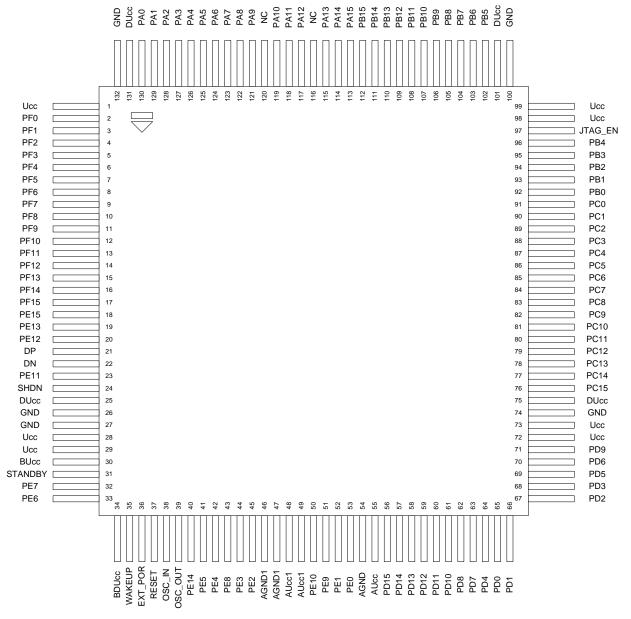



Рисунок 2. Расположение выводов в 132-х выводном корпусе 4229.132-3

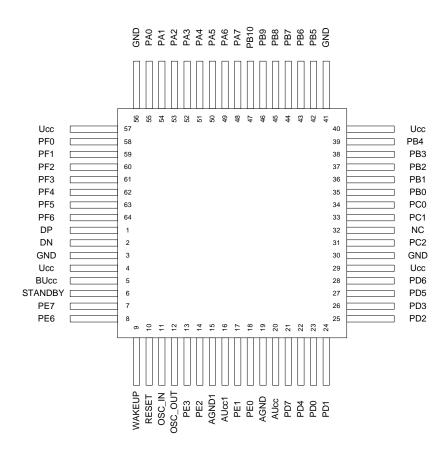



Рисунок 3. Расположение выводов в 64-х выводном корпусе Н18.64-1В

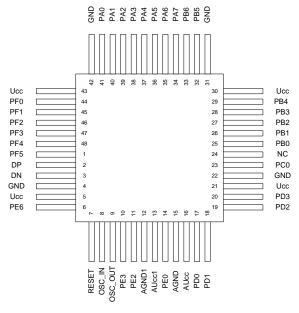



Рисунок 4. Расположение выводов в 48-ми выводном корпусе Н16.48-1В

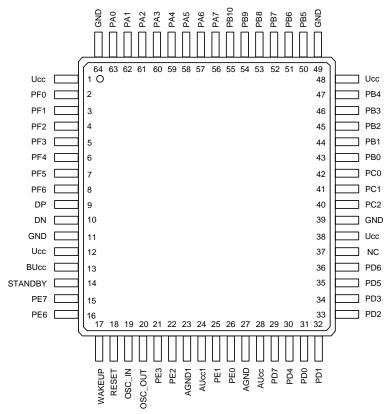



Рисунок 5. Расположение выводов в 64-х выводном пластиковом корпусе LQFP64

### 5 Указания по применению и эксплуатации

```
0,1
                      MODE
(
               10
                                      «()»
                     )
    - 6, 7, 8
                   1986 91 , 1986 94 ;
    - 62, 63, 64
                      1986
                            92,1986,92;
    - 48,1
                  1986
                       93 ;
    - D1, E3, E4
                       1986
                            94 , 1986
                                       94 .
                            1986 93
                                  MDR_PORTF->OE,
                    6-
      MDR_PORTF->ANALOG, MDR_PORTF->GFEN MDR_PORTF->RXTX;
                            13-
                                             MDR PORTF->FUNC
      MDR_PORTF->PWR;
                    6- /
                            22-
                                            MDR_PORTF->PULL
      MDR_PORTF->PD.
                                   В
                                             D,
               1986
                     94
                                      4°/.
```

Таблица 4 – Параметры профиля пайки оловянно-свинцовой паяльной пастой

| Параметр | Оловянно-свинцовый припой |
|----------|---------------------------|
| , ,      | 183                       |
| , °      | 210–220                   |
| ), °     | 205                       |
| , ° /    | 1-4                       |
| , ° /    | 2-4                       |
| , °      | 100-180                   |
| ,        | 60-120                    |
| ,        | 60-90                     |
| ,        | 20                        |

```
1986
                         94
                                                                       : Sn63 / Pb37.
                             4.
                116
                            1986
                                    91, 1986
                                             94 ;
                32
                            1986
                                   92 ;
                24
                                   93;
                            1986
                 E6, E7, F5, F6, F7, G5, G6, G7, G8, H6, H7
                                                                                 94,
                                                                          1986
1986
                                                                                   »,
                                               1986
                                                      92 1
    -36, 24, 97
                         1986
                               91,1986 94;
    - J3, C12
                       1986
                             94 , 1986
                                         94 .
                                             PA - PF, nRESET, WAKEUP
                                                                            (
          )
                              (1 - 100)
    -25, 34, 75, 101, 131
                                 1986
                                        91, 1986
                                                   94 ;
    -A2, A11, H9, J2
                              1986 94 , 1986 94 .
        », «
                 »)
```

#### 6 Система питания

1986 9 **U**сс выводы: , USB PHY 3,6 2,2 USB, 3,0 3,6 2,4 3,6 . DU<sub>CC</sub> выводы: Flash-U<sub>CC</sub>. DUcc1,62 1,98 . BUcc вывод: LSE Ucc  $U_{CC}$ 2,0 . 4  $U_{CC}$ 2,0 . 1,8 3,6 . **BUcc** Ucc.  $U_{CC}$ BDU<sub>CC</sub> вывод:  $BU_{CC}$ AU<sub>CC</sub> выводы: Ucc, 2,4 3,6 . 2,2 2,4 PLL **AU**<sub>CC</sub>1 выводы: Ucc, GND выводы: AGND выводы: AU<sub>CC</sub>. GND, AGND1 выводы:  $AU_{CC1}$ . GND,

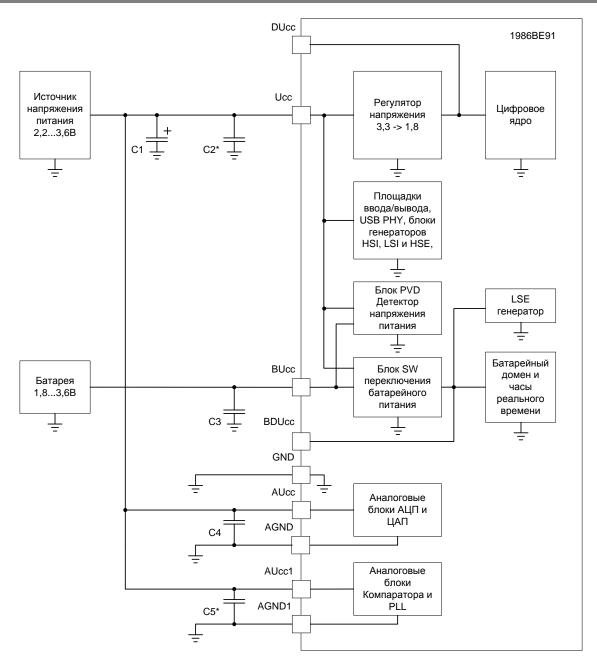



Рисунок 6. Структурная блок-схема подачи питания

```
Примечания:
    1.
    2.
                           1 = 22
                                            2 = 3 = 4 = 5 = 0.1
    3.
                                                                          BUcc
        Ucc;
    4.
                                                                                    U_{CC}
                                              USB,
            3,0
                    3,6 ;
    5.
                                                                                   U<sub>CC</sub> (AU<sub>CC</sub> AU<sub>CC1</sub>)
                                 2,4
                                         3,6
«
                                            «
                                                                                           «
          ».
```

# 6.1 Схема сброса при включении и выключении основного питания



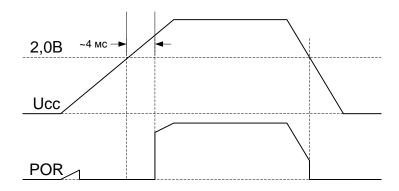



Рисунок 7. Сигнал сброса при включении и выключении основного напряжения питания

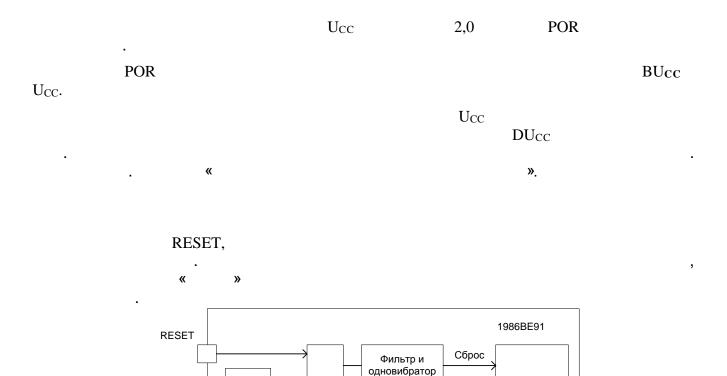



Рисунок 8. Структурная блок-схема сброса

&

IWDG

WWDG

Цифровое

ядро

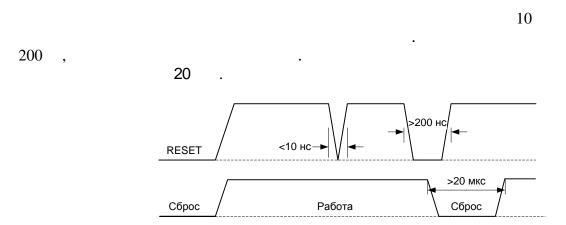



Рисунок 9. Формирование сигнала сброса

### 7 Организация памяти

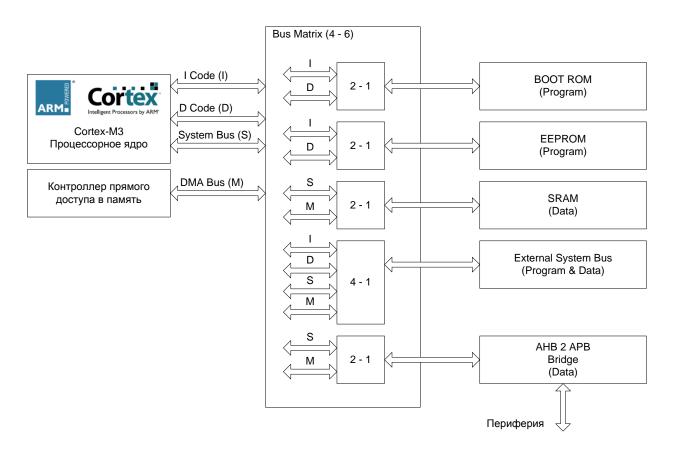



Рисунок 10. Структурная схема организации памяти

```
• I Code – ;
```

- D Code ,
- S Bus .

(DMA),

DMA Bus.

4 .

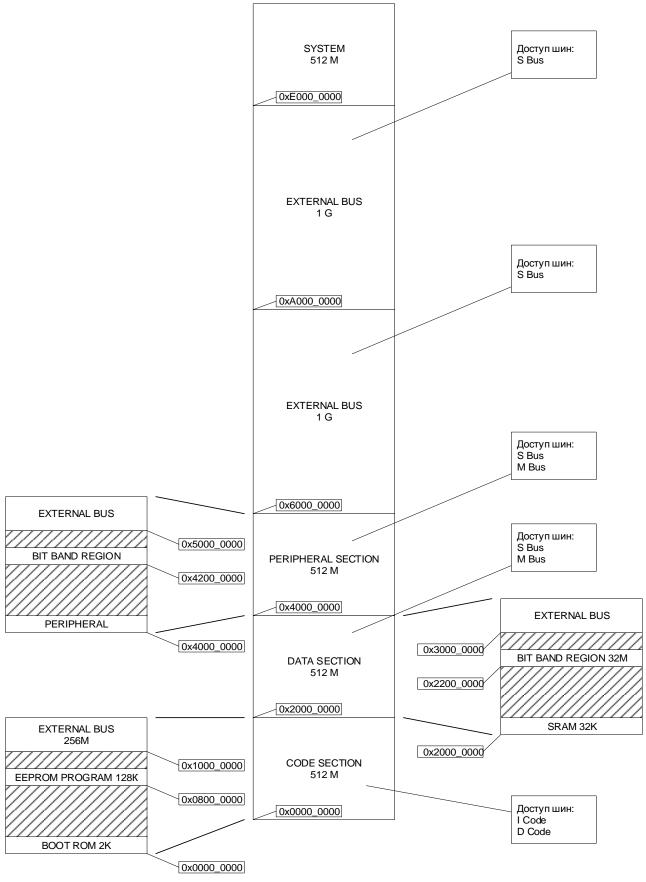



Рисунок 11. Карта распределения основных областей памяти

#### 7.1 Секция CODE

Область BOOT ROM:

Область EEPROM PROGRAM:

Область EXTERNAL BUS:

### 7.2 Секция DATA

Область Internal SRAM (Data):

(stack) « » (heap)

#### Область BIT BAND REGION TO SRAM (Data):

BIT BAND REGION Internal SRAM. **«** ». aliasbit-band [0] aliasbit-band [0] bit-band [0] bit-[31:1] band aliasbit-band 0x01 0xFF. 0x000xFE. alias-0x01 0x00.[31:1] 0x01 bit-band 0x00 bitband

Область EXTERNAL BUS:

## 7.3 Секция PERIPHERAL

Область PERIPHERAL (Data):

#### Область BIT BAND REGION TO PERIPHERAL (Data):

»<u>.</u>

Область EXTERNAL BUS:

### 7.4 Секция EXTERNAL RAM

Область EXTERNAL BUS:

#### 7.5 Секция SYSTEM

#### 7.6 Блок BUS MATRIX

BUS MATRIX I Code, D Code,

System Bus DMA Bus

, ,

System Bus,
D Code, I Code DMA Bus.

,

#### 7.7 Память BOOT ROM

BOOT ROM MASK ROM, c

BOOT ROM – 1

#### 7.8 Память **EEPROM**

EEPROM

EEPROM - 40.

100 5

1 EEPROM

« Flash- ».

#### 7.9 Память SRAM

**SRAM** SRAM - 17.10 Регионы памяти, типы и атрибуты (MPU) **»**. Normal Device Strongly-ordered (« ») Normal Device Strongly-ordered. Device Strongly-ordered Strongly-Ordered Device Device, Strongly-ordered • Shareable (« ») Execute Never XN (« **»**) Shareable Shareable DMA. Strongly-ordered Shareable. Shareable, Execute Never (XN) "Memory Management Fault". XN

## 7.11 Последовательность обращений к памяти

| ,                          | , |     | ,               |
|----------------------------|---|-----|-----------------|
| ,                          | , |     | ,               |
| ,                          |   | ,   |                 |
| ,                          | , |     | (memory barrier |
| instruction), . «          |   | ».  |                 |
| Device Strongly-ordered. 2 | 5 | , 1 | 2, 1            |

Таблица 5 – Последовательность обращений инструкций к памяти

|                         |        | -               |           | <u> </u> |
|-------------------------|--------|-----------------|-----------|----------|
| 2                       | Normal | Dev             | Strongly- |          |
| 1                       | Normai | "non-shareable" | shareable | ordered  |
| Normal                  | -      | -               | -         | -        |
| Device, "non-shareable" | -      | <               | -         | <        |
| Device, shareable       | -      | -               | <         | <        |
| Strongly-ordered        | -      | <               | <         | <        |

"-"
, "< "
, "< "

Normal, Device, Strongly-ordered
"; "non-shareable"
, Shareable
Shareable.</pre>

## 7.12 Поведение обращений к памяти

6.

Таблица 6 – Поведение обращений к памяти

| Адресный<br>диапазон | Секция<br>памяти | Тип<br>памяти | XN | Описание |
|----------------------|------------------|---------------|----|----------|
| 0x00000000-          | Code             | Normal        | -  | ,        |
| 0x1FFFFFFF           |                  |               |    |          |
| 0x20000000-          | SRAM             | Normal        | -  |          |
| 0x3FFFFFFF           |                  |               |    |          |
|                      |                  |               |    | bit-band |
| 0x40000000-          | Peripheral       | Device        | XN | bit-band |
| 0x5FFFFFFF           |                  |               |    |          |
| 0x60000000-          | External         | Normal        | -  |          |
| 0x9FFFFFFF           | RAM              |               |    |          |
| 0xA0000000-          | External         | Device        | XN |          |
| 0xDFFFFFFF           | Device           |               |    |          |
| 0xE0000000-          | Private          | Strongly-     | XN | NVIC,    |
| 0xE00FFFFF           | Peripheral       | ordered       |    |          |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

|             | Bus |        |    |  |
|-------------|-----|--------|----|--|
| 0xE0100000- |     | Device | XN |  |
| Oxffffffff  |     |        |    |  |

Code, SRAM External RAM
Code,
,
MPU
...
« ».

7.12.1 Дополнительные условия доступа к совместно используемой памяти

, 7.

Таблица 7 – Дополнительные условия совместного использования памяти

| Адресный диапазон | Секция памяти      | Тип памяти         | Возможность совместного использования |      |
|-------------------|--------------------|--------------------|---------------------------------------|------|
| 0x00000000-       | Code               | Normal             |                                       |      |
| 0x1FFFFFFF        | Code               | Nomai              | -                                     |      |
| 0x20000000-       | SRAM               | Normal             |                                       |      |
| 0x3FFFFFFF        | SKAM               | Normai             | -                                     |      |
| 0x40000000-       | Davimbanal         | Davisa             |                                       |      |
| 0x5FFFFFFF        | Peripheral         | Device             | -                                     |      |
| 0x60000000-       |                    |                    |                                       | WDWA |
| 0x7FFFFFFF        | External DAM       | Normal             |                                       | WBWA |
| 0x80000000-       | External RAM       |                    | -                                     | WT   |
| 0x9FFFFFFF        |                    |                    |                                       | WT   |
| 0xA0000000-       |                    |                    | Charachla                             |      |
| 0xBFFFFFFF        | Evitament davisa   | Davisa             | Shareable                             |      |
| 0xC0000000-       | External device    | Device             | "non shoroshle"                       |      |
| 0xDFFFFFFF        |                    |                    | "non-shareable"                       |      |
| 0xE0000000-       | Private peripheral | Ctuan also and and | Charachla                             |      |
| 0xE00FFFFF        | bus                | Strongly-ordered   | Shareable                             |      |
| 0xE0100000-       | Vendor-specific    | Dania              |                                       |      |
| 0xffffffff        | device             | Device             | -                                     |      |

Normal, Device, Strongly-ordered Shareable . «
»; "non-shareable" , Shareable.

## 7.13 Программное упорядочение обращений к памяти

( ) ;

```
DMB
           Data Memory Barrier (DMB)
     DMB.
DSB
           Data Synchronization Barrier (DSB)
   (
              ).
                                            DSB.
ISB
           Instruction Synchronization Barrier (ISB)
                                             ISB.
                  MPU:
                   DSB
       MPU
                   ISB
       MPU
                                                                           MPU
                                          MPU
                                               MPU
                                  ISB
            DMB.
              ISB
                                      DSB
```

## 7.14 Bit-band регионы

bit-band bit-band bit-band alias
. Bit-band 1 SRAM
(Peripheral). 32 bit-band alias,
8.

#### Таблица 8 – Описание bit-band регионов

| Адресный диапазон | Регион памяти             | Доступ к инструкциям и данным |
|-------------------|---------------------------|-------------------------------|
| 0x2000_0000-      | SRAM bit-band             |                               |
| 0x200F_FFFF       |                           |                               |
| 0x2200_0000-      | SRAM bit-band alias       | SRAM bit-band                 |
| 0x23FF_FFFF       |                           | SRAM bit-band alias           |
| 0x4000 0000-      | Peripheral bit-band       |                               |
| 0x400F_FFFF       |                           |                               |
| 0x4200_0000-      | Peripheral bit-band alias | Peripheral bit-band           |
| 0x43FF_FFFF       |                           | Peripheral bit-               |
| _                 |                           | band alias                    |

```
bit_word_offset = (byte_offset * 32) + (bit_number * 4)
bit_word_addr = bit_band_base + bit_word_offset

:
bit_word_offset - bit-band ;
bit_word_addr - bit-band alias ,
bit-band ;
bit_band_base - bit-band alias ;
byte_offset - bit-band ;
bit_number - .
```




Рисунок 12. Схема отображения региона bit-band alias в регионе bit-band region

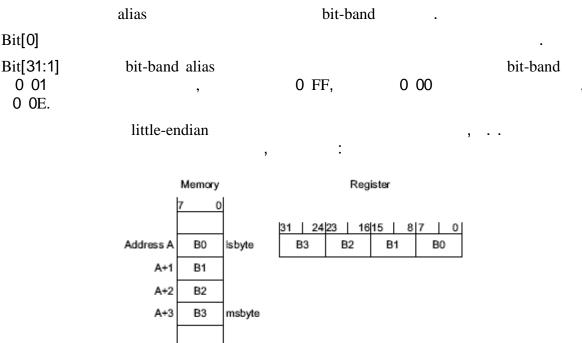



Рисунок 13. Организация расположения байтов в 32-х битной памяти

## 7.15 Примитивы синхронизации

 Сотtex-M3
 примитивов

 синхронизации.
 ,

 .
 read-modify 

write

```
)
         Load-Exclusive;
         Store-Exclusive.
        Команда Load-Exclusive
7.15.1
7.15.2 Команда Store-Exclusive
0 - 
1 –
        Load Exclusive Store-Exclusive
  LDREX STREX -
  LDREXH STREXH-
   LDREXB STREXB -
                                                      Load Exclusive
                      Store-Exclusive.
               Load-Exclusive
               Store-Exclusive
                - 0,
                - 1.
                       Load-Exclusive
                                     Store-Exclusive
   Store-Exclusive,
                                                                    Store-
   Exclusive
     Cortex-M3
              Load-Exclusive.
                               CLREX;
```

- Store-Exclusive,
- ,
- CLREX
- Store-Exclusive

LDREX, STREX CLREX.

# 7.16 Указания по программированию примитивов синхронизации

ANSI C

Таблица 9 – Встроенные функции для создания инструкций эксклюзивного доступа

| Инструкции               | Функции                                                   |
|--------------------------|-----------------------------------------------------------|
| LDREX, LDREXH,<br>LDREXB | unsigned intldrex(volatile void *ptr)                     |
| STREX, STREXH,<br>STREXB | <pre>intstrex(unsigned int val, volatile void *ptr)</pre> |
| CLREX                    | void clrex(void)                                          |

. , LDREXB:
\_\_ldrex((volatile char \*) 0xFF);

## 7.17 Базовые адреса процессора

Таблица 10 – Базовые адреса процессора

| Адрес                      | Размер          | Ι     | Блок           | Примечание | 1 ' 1 |
|----------------------------|-----------------|-------|----------------|------------|-------|
| ТАРСС                      | 1 wotep         |       | Память про     | •          |       |
| 0x0000 0000                | 1               | ROC   | OT ROM         | or pairin  |       |
| 0x0800 0000                | 128             | _     | ROM            | Flash-     |       |
| 020000_0000                | 120             |       | KOWI           | T TOST     |       |
| 0x1000 0000                | 256             | ЕХТ   | TERNAL BUS     |            |       |
| _                          |                 | l .   | Память да      | анных      |       |
| 0x2000 0000                | 32              | SYS   | TEM RAM        |            |       |
| 0x2200 0000                | 16              |       | TEM RAM        |            |       |
| _                          |                 | Bit I | Band Region    |            |       |
| 0x3000_0000                | 256             |       | TERNAL BUS     |            |       |
|                            |                 |       | Перифе         | рия        |       |
| 0x4000 0000                | 1536            | 0     | CAN1           |            | CAN1  |
| 0x4000_8000                | 1536            | 1     | CAN2           |            | CAN2  |
| 0x4001_0000                | 904             | 2     | USB            |            | USB   |
| 0x4001_8000                | 20              | 3     | EEPROM_CNTRL   | Flash-     |       |
| 0x4002_0000                | 48              | 4     | RST_CLK        |            |       |
| 0x4002_8000                | 80              | 5     | DMA            |            |       |
| 0x4003 0000                | 72              | 6     | UART1          |            | UART1 |
| 0x4003 8000                | 72              | 7     | UART2          |            | UART2 |
| 0x4004 0000                | 36              | 8     | SPI1           |            | SSP1  |
| 0x4004 8000                | _               | 9     | -              |            |       |
| 0x4005_0000                | 28              | 10    | I2C1           |            | I2C1  |
| 0x4005_8000                | 4               | 11    | POWER          |            |       |
| 0x4006_0000                | 12              | 12    | WWDT           |            |       |
|                            |                 |       |                | WWDT       |       |
| 0x4006_8000                | 16              | 13    | IWDT           |            |       |
|                            | 100             |       |                | IWDT       |       |
| 0x4007_0000                | 128             | 14    | TIMER1         | 1          |       |
| 0x4007_8000                | 128             | 15    | TIMER2         | 2          |       |
| 0x4008_0000                | 128             | 16    | TIMER3         | 3          |       |
| 0x4008_8000                | 48              | 17    | ADC            |            |       |
| 0x4009_0000                | 12              | 18    | DAC            |            |       |
| 0x4009_8000                | 12              | 19    | COMP           |            | CCDC  |
| 0x400A 0000                | 36              | 20    | SPI2           |            | SSP2  |
| 0x400A_8000                | 32              | 21    | PORTA          |            |       |
| 0x400B_0000<br>0x400B_8000 | 32              | 22    | PORTB          | В          |       |
|                            | 32              | 23    | PORTC          | C<br>D     |       |
| 0x400C 0000<br>0x400C 8000 | 32              | 24    | PORTD<br>PORTE | E E        |       |
| 0x400C_8000<br>0x400D_0000 | 32              | 26    | - FORTE        |            |       |
| 0x400D_0000<br>0x400D_8000 | 84              | 27    | BKP            |            |       |
| 0000 0000                  | U <del>'1</del> | 41    | DIZL           |            |       |

## Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| 0x400E_0000 | 1   | 28    | -             |           |  |
|-------------|-----|-------|---------------|-----------|--|
| 0x400E_8000 | 32  | 29    | PORTF         | F         |  |
| 0x400F_0000 | 88  | 30    | EXT_BUS_CNTRL |           |  |
| 0x400F_8000 | I   | 31    | -             |           |  |
| 0x4200_0000 | 16  | PER   | IPHERAL       |           |  |
|             |     | Bit I | Band Region   |           |  |
| 0x5000_0000 | 256 | EXT   | TERNAL BUS    |           |  |
|             |     |       | Внешняя систе | мная шина |  |
| 0x6000_0000 | 1   | EXT   | TERNAL BUS    |           |  |
| 0000_000Ax0 | 1   | EXT   | TERNAL BUS    |           |  |
|             |     |       | SYSTEM RI     | EGION     |  |
| 0xE000_0000 | 256 |       |               | ARM       |  |
|             |     |       |               | Cortex-M3 |  |

## 8 Загрузочное ПЗУ и режимы работы микроконтроллера

|             |                        |       | (POR)              | (RESET) |                   |
|-------------|------------------------|-------|--------------------|---------|-------------------|
| BOOT ROM.   |                        |       | ,                  |         |                   |
|             | ,<br>MODE[2:0] (PF[6:4 |       | ,                  |         | ,                 |
| « »         | ~-                     | 50 ). | » (                | FPOR    | <b>T</b> T        |
| BKP_REG_0E, |                        |       | MODE[2:0]<br>FPOR. |         | U <sub>CC</sub> . |
|             | PF[6:4]                |       |                    |         |                   |

Таблица 11 – Режимы первоначального запуска микроконтроллера

| MODE[2:0] | Режим | Стартовый адрес /<br>таблица векторов<br>прерываний | Описание          |
|-----------|-------|-----------------------------------------------------|-------------------|
| 000       |       | 0x0800_0000                                         | Flash             |
|           |       |                                                     | JTAG_B            |
| 001       |       | 0x0800_0000                                         | Flash             |
|           |       |                                                     | JTAG_             |
| 010       |       | 0x1000_0000                                         | Wait_States = 0xF |
|           |       |                                                     | JTAG_B            |
| 011       |       | 0x1000_0000                                         | Wait_States = 0xF |
|           |       |                                                     | JTAG/SW           |
| 100       |       | _                                                   | -                 |
| 101       | UART  |                                                     | PD[1:0]           |
| 110       | UART  |                                                     | UART2<br>PF[1:0]  |
| 111       |       | -                                                   | -                 |

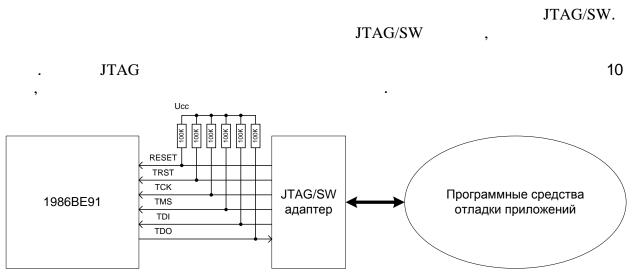



Рисунок 14. Схема работы в режиме отладки

Flash- ;

Flash- ;

JTAG/SW

12.

Таблица 12 – Переопределение выводов интерфейса JTAG/SW

| Вывод JTAG/SW | Вывод микроконтроллера |            | Опи   | сание  |       |    |
|---------------|------------------------|------------|-------|--------|-------|----|
|               | JTA(                   | G_A        |       |        |       |    |
| TRST          | PB4/JA_TRST            |            |       |        |       |    |
| TCK           | PB2/JA_TCK             |            | В,    |        |       |    |
| TMS           | PB1/JA_TMS             |            |       |        | ,     |    |
| TDI           | PB3/JA_TDI             |            | 3,    | UART1, | UART2 |    |
| TDO           | PB0/JA_TDO             | CAN1,      |       |        |       |    |
|               |                        |            |       |        |       |    |
|               | JTA(                   | <b>G_B</b> |       |        |       |    |
| TRST          | PD2/JB_TRST            |            |       |        |       |    |
| TCK           | PD1/JB_TCK             |            | D,    |        |       |    |
| TMS           | PD0/JB_TMS             | ,          |       |        | 1     | 3, |
| TDI           | PD3/JB_TDI             | UART2      | SSP2, |        |       |    |
| TDO           | PD4/JB_TDO             |            |       |        |       |    |

## 8.1 UART загрузчик

Таблица 13 – Используемые порты ввода/вывода UART загрузчиком

| Режим MODE[2:0] | TX    | RX    |
|-----------------|-------|-------|
| 101             | PD[1] | PD[0] |
| 110             | PF[1] | PF[0] |

- ( , Flash- ), . . . , (EEPROM, ROM, ).

UART2 HSI 8 . HSI,

UART2 .

#### 8.1.1 Параметры связи по UART

UART

• -9600 ;

−8;

• - ;

• Stop -1;

• FIFO UART2;

• Slave, ,

, – Master;

•

#### 8.1.2 Протокол обмена по UART

, (Master),

,

## Таблица 14 – Команды UART загрузчика

RC-

| Команда  | Код  | ASCII<br>Символ | Описание |
|----------|------|-----------------|----------|
| CMD_SYNC | 0x00 |                 |          |
| CMD_CR   | 0x0D |                 | Master-  |
| CMD_BAUD | 0x42 | 'B'             |          |
| CMD_LOAD | 0x4C | 'L'             |          |
| CMD_VFY  | 0x59 | 'Y'             |          |
| CMD_RUN  | 0x52 | 'R'             |          |

### 8.1.3 Синхронизация с внешним устройством

| . N | Master         | (Master) F<br>- 0.     | ₹x |      |
|-----|----------------|------------------------|----|------|
| (   | ,<br>), 0x0A ( | ), 0x3E ('>'),) Master | (3 | 0x0D |
| М   | aster          | , ,                    |    |      |
|     | •              |                        |    |      |

#### 8.1.4 Команда CMD\_SYNC

(Slave) ,

### Таблица 15 – Команда CMD\_SYNC

|        |   |          | CMD_SYNC | =0x00   |              |
|--------|---|----------|----------|---------|--------------|
| ASCII  | , |          |          |         |              |
|        |   |          |          |         |              |
|        |   |          | 0        |         |              |
|        | : |          |          |         |              |
| Master |   | CMD_SYNC | Slave    | ERR_CHN | ,<br>ERR_CMD |

## 8.1.5 Команда CMD\_CR

Master-

#### Таблица 16 – Команда CMD CR

|        |        |              | <u> </u>                               |         |
|--------|--------|--------------|----------------------------------------|---------|
|        |        | $CMD_CR = 0$ | 0x0D                                   |         |
| ASCII  | ,      |              |                                        |         |
|        |        |              |                                        |         |
|        |        | 0            |                                        |         |
|        | :      |              |                                        |         |
| Master | CMD_CR | Slave        |                                        | ,       |
|        |        |              | ERR_CHN                                | ERR_CMD |
|        |        |              | CMD_CR.                                |         |
|        |        | ſ            | )x0A                                   |         |
|        |        |              | )x3E (ASCII '>                         | .')     |
|        |        | _            | // / / / / / / / / / / / / / / / / / / | · /     |

#### 8.1.6 Команда CMD\_BAUD

## Таблица 17 – Команда CMD\_BAUD

|         |          | CMD_F | BAUD = 0x42 |          |              |
|---------|----------|-------|-------------|----------|--------------|
| ASCII , |          | 'B'   |             |          |              |
|         |          | 1     |             |          |              |
|         |          |       |             |          | ]            |
| Master  | CMD_BAUD | Slave |             | ERR_CHN  | ,<br>ERR_CMD |
| Master  |          |       | ERR_CHN     | ERR_BA   | ,<br>UD      |
|         |          |       |             | CMD_BAUD | ).           |

#### 8.1.7 Команда CMD\_LOAD

Таблица 18 – Команда CMD\_LOAD

|          |           | G1 55 T G 1 T | 2 0 10                                | ·           |
|----------|-----------|---------------|---------------------------------------|-------------|
|          |           | CMD_LOAI      | $\mathbf{J} = 0\mathbf{x}4\mathbf{C}$ |             |
| ASCII    | ,         | 'L'           |                                       |             |
| 7.00     | ,         |               |                                       |             |
|          |           | _             |                                       |             |
|          |           | 2             |                                       |             |
|          | 1.        |               |                                       |             |
|          | 2.        |               |                                       |             |
|          | :         |               |                                       |             |
| Master   | CMD_LOAD  | Slave         |                                       |             |
| Widoto   | 3MB_23/18 | Ciaro         | ERR_CHN                               | ERR_CMD     |
|          |           |               | LIXIX_CI IIV                          | LIXIX_CIVID |
|          |           |               |                                       | •           |
| Master   | 1.        | Slave         |                                       |             |
|          |           |               |                                       | ERR_CHN     |
|          |           | ,             |                                       | <b>__</b>   |
| NA t     |           | 01            |                                       |             |
| Master   | 2.        | Slave         |                                       |             |
|          |           | ,             |                                       | ERR_CHN     |
|          |           |               |                                       |             |
|          |           |               | CMD_LOAD                              | •           |
| Master   |           | Slave         |                                       |             |
| iviasidi |           | Jiave         | •                                     |             |
|          |           |               | ,                                     |             |
|          |           | ERR_CHN       |                                       |             |
|          |           |               |                                       |             |
|          |           | ,             |                                       |             |
|          |           |               |                                       | 45 (11.41)  |
|          |           |               | $REPLY_OK = 0$                        | x4B ('K')   |

## 8.1.8 Команда CMD\_VFY

## Таблица 19 – Команда CMD\_VFY

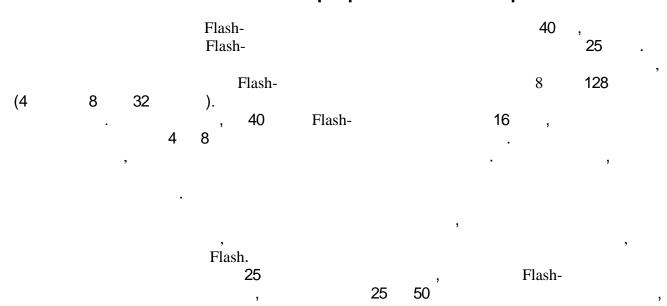
|          |         | CMD_V | YFY = 0x59 |      |               |
|----------|---------|-------|------------|------|---------------|
| ASCII    | ,       | 'Y'   |            |      |               |
|          |         |       |            |      |               |
|          |         | 2     |            |      |               |
|          | 1       |       |            |      |               |
|          | 2       |       |            |      |               |
|          | :       |       |            |      |               |
| Master   | CMD_VFY | Slave | EDD 6      |      | ,             |
|          |         |       | ERR_C      | HN   | ERR_CMD       |
| Master   | 1       | Slave |            |      |               |
| iviasiei | ı       | Slave |            |      | ERR_CHN       |
|          |         |       | ,          |      | LIXIX_CI IIV  |
| Master   | 2       | Slave |            |      |               |
|          |         |       | ,          |      | ERR_CHN       |
|          |         |       |            |      |               |
|          |         |       | CMD_VFY.   |      |               |
|          |         |       |            |      |               |
|          |         |       |            | REPL | $Y_OK = 0x4B$ |
|          |         | ('K') |            |      |               |

## 8.1.9 Команда CMD\_RUN

## Таблица 20 – Команда CMD\_RUN

|         |          | $CMD_RUN = 0x$ | 52      |         |
|---------|----------|----------------|---------|---------|
| ASCII , |          | 'R'            |         |         |
|         |          |                |         |         |
|         |          | 1              |         |         |
| •       |          |                |         |         |
| :       |          |                |         |         |
| Master  | CMD_RUN. | Slave          |         | ,       |
|         |          |                | ERR_CHN | ERR_CMD |
|         |          |                |         |         |
| Master  | •        |                |         | ,       |
|         |          | ERR_0          | CHN     |         |
|         |          | 0.45           | •       |         |
|         |          | CMD_RUN.       |         | MSP PC  |
|         |          |                | `       | (NVIC   |
|         |          |                | ) ,     | , Slave |
|         |          |                |         |         |

# 8.1.10 Прием параметров команды Oxffffffff. (UART '1' ), 8.1.11 Сообщения об ошибках 2-0x45 ('E'). Master CMD\_CR Master : ERR\_CHN, ERR\_CMD, ERR\_BAUD Ошибка ERR\_CHN UART. 0x69 ('i'). **UART** Ошибка ERR\_CMD 0x63 ('c'). Ошибка ERR\_BAUD 0x62 ('b').


Master-

UART.

## 9 Контроллер Flash-памяти программ MDR\_EEPROM

Flash-

## 9.1 Работа Flash-памяти программ в обычном режиме



EEPROM\_CMD Delay[2:0]. Flash-

Таблица 21 – Дополнительная пауза для работы Flash-памяти

| Delay[2:0] | Тактов паузы | Тактовая частота | Примечание |
|------------|--------------|------------------|------------|
| 0x00       | 0            | 25               |            |
| 0x01       | 1            | 50               |            |
| 0x02       | 2            | 75               |            |
| 0x03       | 3            | 100              | 80         |
| 0x04       | 4            | 125              |            |
| 0x05       | 5            | 150              |            |
| 0x06       | 6            | 175              |            |
| 0x07       | 7            | 200              |            |

21

# 9.2 Работа Flash-памяти программ в режиме программирования

| Page 31                  | 0x0801_FFFC                | 0x0801_FFF8                | 0x0801_FFF4                | 0x0801_FFF0                |
|--------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| 256 <b>128</b><br>4K x 8 | 0x0801_F00C                | <br>0x0801_F008            | <br>0x0801_F004            | 0x0801_F000                |
|                          |                            |                            |                            |                            |
| Page 1                   | 0x0800_1FFC                | 0x0800_1FF8                | 0x0800_1FF4                | 0x0800_1FF0                |
| 256 <b>128</b><br>4K x 8 | 0x0800_100C                | 0x0800_1008                | 0x0800_1004                | 0x0800_1000                |
| Page 0                   | 0x0800_0FFC                | 0x0800_0FF8                | 0x0800_0FF4                | 0x0800_0FF0                |
| 256 <b>128</b><br>4K x 8 | 0x0800_001C<br>0x0800_000C | 0x0800_0018<br>0x0800_0008 | 0x0800_0014<br>0x0800_0004 | 0x0800_0010<br>0x0800_0000 |
|                          | Sector_D                   | Sector_C                   | Sector_B                   | Sector_A                   |
|                          | 256 x 32<br>1K x 8         |

(IFREN=0)

| Page 0  | 0x0800_0FFC | 0x0800_0FF8 | 0x0800_0FF4 | 0x0800_0FF0 |
|---------|-------------|-------------|-------------|-------------|
| 256 128 | 0x0800_001C | 0x0800_0018 | 0x0800_0014 | 0x0800_0010 |
| 4K x 8  | 0x0800_000C | 0x0800_0008 | 0x0800_0004 | 0x0800_0000 |
|         | Sector_D    | Sector_C    | Sector_B    | Sector_A    |
|         | 256 x 32    | 256 x 32    | 256 x 32    | 256 x 32    |
|         | 1K x 8      | 1 x 8       | 1 x 8       | 1K x 8      |

(IFREN=1)

Рисунок 15. Структура памяти Flash

#### 9.2.1 Стирание всей памяти

1 - Sector\_A ; 2 - Sector\_B ;

```
3
                    Sector_C
    4
                    Sector_D
                                                                     IFREN (1 -
                                       0 -
EEPROM_ADR[3:2] (00 - Sector_A, 01 - Sector_B, 10 - Sector_C
                                                                11 - Sector_D)
               XE, MAS1 ERASE
                                                          tnvs = 5
                                                      tme = 40
NVSTR
                       ERASE,
                                            tnvh1 = 100
                                                                        XE, MAS1
NVSTR.
                                                                       trcv = 1
```

16).

( .

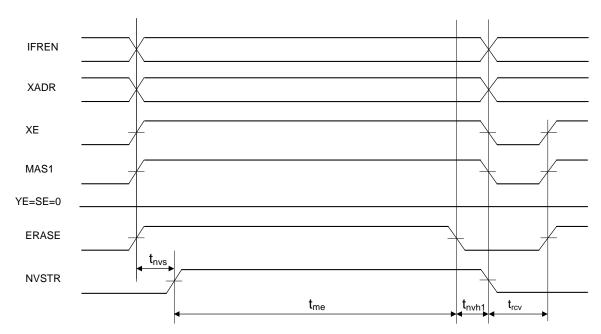



Рисунок 16. Временная диаграмма стирания памяти

4

#### 9.2.2 Стирание банка памяти одной страницы размером 4 Кбайт

| ,      | 1<br>2<br>3<br>4 | -<br>-<br>- | Sector_A<br>Sector_B<br>Sector_C<br>Sector_D |    |    |           |                      |        |
|--------|------------------|-------------|----------------------------------------------|----|----|-----------|----------------------|--------|
| 01 – 5 |                  | tnvs =      | 0 -<br>EEPROM_AI<br>- Sector_C 1<br>5        | -  | ), | EEPROM_AI | DR[3:2] (00<br>ERASE | ,      |
| 5      | terase           | e = 40      | XE NVSTR                                     | ۷. |    | ERASE     | ,                    | tnvh = |



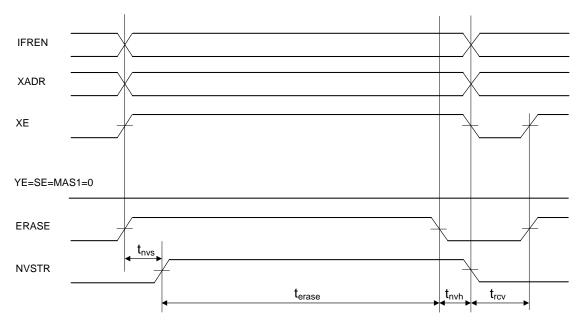



Рисунок 17. Временная диаграмма стирания банка памяти

#### 9.2.3 Запись 32-х битного слова в память

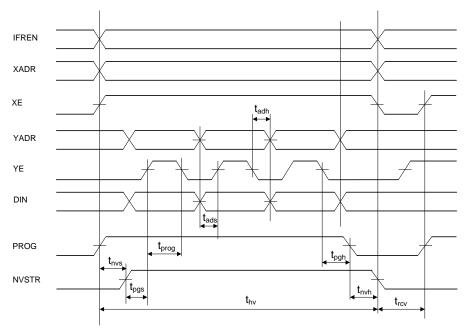
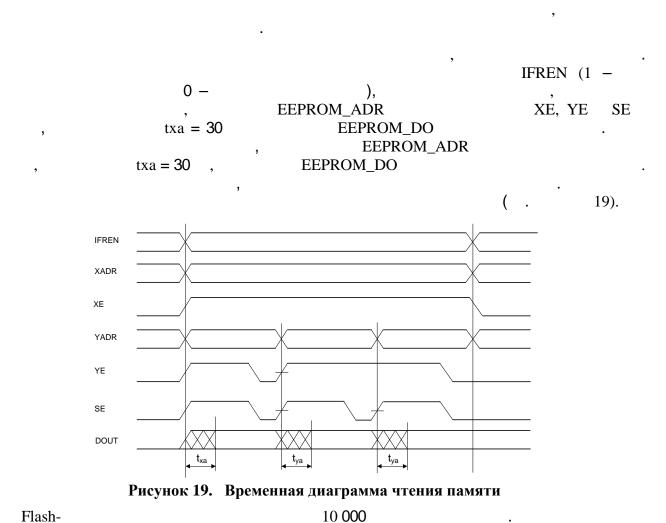




Рисунок 18. Временная диаграмма записи памяти

#### 9.2.4 Чтение 32-х битного слова из памяти



4

## 9.3 Регистры управления контроллера Flash-памяти программ

22 Flash-

Таблица 22 – Регистры управления контроллера Flash-памяти программ

| Базовый адрес | Название   | Описание |
|---------------|------------|----------|
| 0x4001_8000   | MDR_EEPROM | Flash-   |
| Смещение      |            |          |
| 0x00          | CMD        |          |
| 0x04          | ADR        |          |
| 0x08          | DI         |          |
| 0x0C          | DO         |          |
| 0x10          | KEY        |          |

:

R/W -

RO -

U

### 9.3.1 MDR\_EEPROM->CMD

## Таблица 23 – Регистр команды EEPROM\_CMD

| Номер  | 3114 | 13    | 12   | 11   | 10    |
|--------|------|-------|------|------|-------|
| Доступ | U    | R/W   | R/W  | R/W  | R/W   |
| Сброс  | 0    | 0     | 0    | 0    | 0     |
|        |      | NVSTR | PROG | MAS1 | ERASE |

| Номер  | 9     | 8   | 7   | 6   | 53                 | 2, 1 | 0   |
|--------|-------|-----|-----|-----|--------------------|------|-----|
| Доступ | R/W   | R/W | R/W | R/W | R/W                | U    | R/W |
| Сброс  | 0     | 0   | 0   | 0   | 100                | 0    | 0   |
|        | IFREN | SE  | YE  | XE  | <b>Delay</b> [2:0] |      | CON |

## Таблица 24 – Описание бит регистра EEPROM\_CMD

| <b>№</b><br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита,<br>краткое описание назначения и принимаемых значений |
|------------------|----------------------------|-----------------------------------------------------------------------------------------------|
| 3114             | -                          |                                                                                               |
| 13               | NVSTR                      | :                                                                                             |
|                  |                            | 0 – ;                                                                                         |
|                  |                            | 1 –                                                                                           |
| 12               | PROG                       | ADR[16:2] EEPROM_DI:                                                                          |
|                  |                            | 0 - ;                                                                                         |
|                  |                            | 1-                                                                                            |
| 11               | MAS1                       | ERASE =1:                                                                                     |
|                  |                            | 0 – ADR[16:12]                                                                                |
|                  |                            | ADR[3:2];                                                                                     |
| 10               | ED A CE                    | 1 – ADR[3:2]                                                                                  |
| 10               | ERASE                      | 0 - ;<br>1 -                                                                                  |
| 9                | IFREN                      | · ·                                                                                           |
|                  |                            | 0-;                                                                                           |
|                  |                            | 1-                                                                                            |
| 8                | SE                         | :                                                                                             |
|                  |                            | 0 - ;                                                                                         |
|                  |                            | 1-                                                                                            |
| 7                | YE                         | ADR[8:2]:                                                                                     |
|                  |                            | 0-;                                                                                           |
|                  | T/D                        | 1-                                                                                            |
| 6                | XE                         | ADR[16:9]:                                                                                    |
|                  |                            | 0 — ;                                                                                         |
| 53               | Doloy[2,0]                 | 1 –                                                                                           |
| ეა               | Delay[2:0]                 | ):                                                                                            |
|                  |                            | 000 – 0                                                                                       |
|                  |                            | 001 – 1                                                                                       |
|                  |                            | 111 – 7                                                                                       |

#### Спецификация микросхем серии 1986ВЕ9ху, К1986ВЕ9ху, К1986ВЕ9хуК, К1986ВЕ92QI, К1986ВЕ92QC, 1986ВЕ91Н4, К1986ВЕ91Н4, 1986ВЕ94Н4, К1986ВЕ94Н4

| 2, 1 | -   |     |               |        |   |
|------|-----|-----|---------------|--------|---|
| 0    | CON |     |               | EEPROM |   |
|      |     | ,   |               |        |   |
|      |     |     | EEPROM:       |        |   |
|      |     | 0 – | <b>EEPROM</b> | ,      | • |
|      |     | 1 — | ,             |        |   |

#### 9.3.2 MDR\_EEPROM->ADR

#### Таблица 25 – Регистр адреса EEPROM\_ADR

| Номер  | 310        |
|--------|------------|
| Доступ | R/W        |
| Сброс  | 0          |
|        | ADR [31:0] |

#### Таблица 26 – Описание бит регистра адреса EEPROM\_ADR

| No   | Функционально | Расшифровка функционального имени бита, краткое описание |
|------|---------------|----------------------------------------------------------|
| бита | имя бита      | назначения и принимаемых значений                        |
| 310  | ADR[31:0]     | :                                                        |
|      |               | ADR[1:0] – ,                                             |
|      |               | 32                                                       |

#### 9.3.3 MDR\_EEPROM->DI

#### Таблица 27 – Регистр записываемых данных EEPROM\_DI

| Номер  | 310         |
|--------|-------------|
| Доступ | R/W         |
| Сброс  | 0           |
|        | DATA [31:0] |

#### Таблица 28 – Описание бит регистра записываемых данных EEPROM\_DI

| №<br>бита | _          | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|------------|--------------------------------------------------------------------------------------------|
| 310       | DATA[31:0] | EEPROM                                                                                     |

#### 9.3.4 MDR\_EEPROM->DO

#### Таблица 29 – Регистр считываемых данных EEPROM\_DO

| Номер  | 310         |
|--------|-------------|
| Доступ | R/W         |
| Сброс  | 0           |
|        | DATA [31:0] |

#### Таблица 30 – Описание бит регистра считываемых данных EEPROM\_DO

| 7.0 | -              |                                                 |
|-----|----------------|-------------------------------------------------|
| Ŋoౖ | Функциональное | Расшифровка функционального имени бита, краткое |

## Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| бита | имя бита   | описание назначения и принимаемых значений |
|------|------------|--------------------------------------------|
| 310  | DATA[31:0] | , EEPROM                                   |

### 9.3.5 MDR\_EEPROM->KEY

## Таблица 31 – Регистр ключа ЕЕРКОМ\_КЕУ

| 310        |
|------------|
| R/W        |
| 0          |
| KEY [31:0] |

## Таблица 32 – Описание бит регистра ключа EEPROM\_KEY

| №    | Функциональное | Расшифровка функционального имени бита, краткое |  |  |  |
|------|----------------|-------------------------------------------------|--|--|--|
| бита | имя бита       | описание назначения и принимаемых значений      |  |  |  |
| 310  | KEY[31:0]      | Flash-                                          |  |  |  |
|      |                | •                                               |  |  |  |
|      |                |                                                 |  |  |  |
|      |                | EEPROM_KEY                                      |  |  |  |
|      |                | 0x8AAA5551                                      |  |  |  |

## 10 Процессорное ядро ARM Cortex-M3

Cortex-M3 : 32-

• ;

•

• MPU.

Sleep;

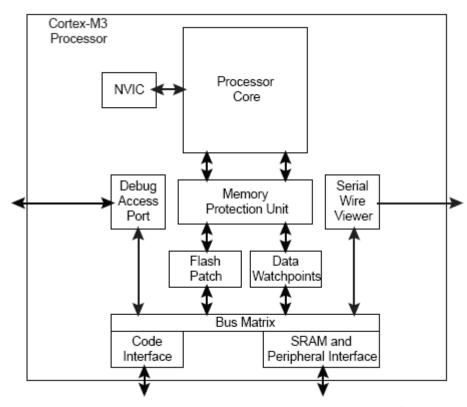



Рисунок 20. Структурная блок-схема процессорного ядра Cortex-M3

Cortex-M3 3-

· ,

32 32 . Thumb2,

Cortex-M3 32-

NVIC, . NVIC 8-

(interrupt service routines - ISR),

16-

8-

**NVIC** Sleep Deep Sleep, Cortex-M3 (MPU) Cortex-M3 Cortex-M3 JTAG SWD. ITM, **NVIC** SBC SysTick 24-**MPU** 8-Программная модель 10.1 Thread Handler

Thread

Unprivileged MSR MRS **CPS** , NVIC unprivileged. Privileged privileged. Thread **CONTROL** unprivileged CONTROL. privileged. handler privileged **CONTROL** Thread SVC supervisor call 10.2 Стек main process Thread CONTROL - main

Таблица 33 – Режимы работы процессора при выполнении программы

Handler

| Режим процессора | Использование | Уровни привилегии<br>для программного<br>обеспечения | Используемый стек              |
|------------------|---------------|------------------------------------------------------|--------------------------------|
| Thread           |               | Privileged<br>Unprivileged <sup>(1)</sup>            | Main<br>Process <sup>(1)</sup> |
| Handler          |               | Privileged                                           | Main                           |

**CONTROL** 

1. CONTROL

## 10.3 Регистры ядра

process,

main

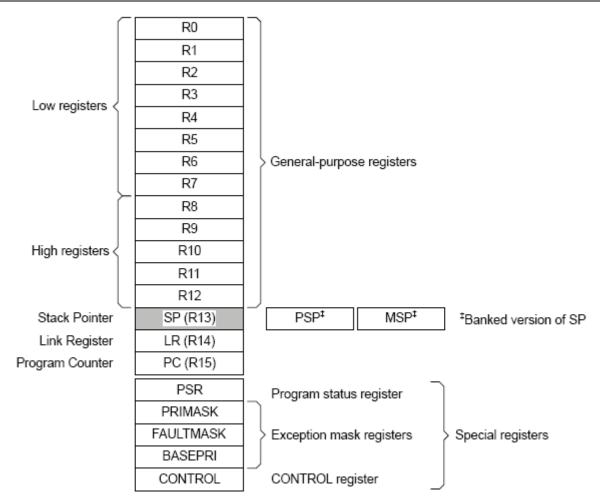



Рисунок 21. Регистры ядра

Таблица 34 – Сводная таблица регистров ядра

|          | тиолица эт Сводная таолица регистров ядра |            |              |                                     |  |  |  |
|----------|-------------------------------------------|------------|--------------|-------------------------------------|--|--|--|
| Название | Тип <sup>(1)</sup>                        | Требуемый  | Значение     | Описание                            |  |  |  |
|          |                                           | уровень    | после сброса |                                     |  |  |  |
|          |                                           | привилегий |              |                                     |  |  |  |
| R0-R12   | RW                                        | (2)        |              |                                     |  |  |  |
| MSP      | RW                                        | Privileged |              | main                                |  |  |  |
|          |                                           |            |              | Stack Pointer                       |  |  |  |
| PSP      | RW                                        | (2)        |              | process                             |  |  |  |
|          |                                           |            |              | Stack Pointer                       |  |  |  |
| LR       | RW                                        | (2)        | Oxffffffff   |                                     |  |  |  |
|          |                                           |            |              | Link Register                       |  |  |  |
| PC       | RW                                        | (2)        |              |                                     |  |  |  |
|          |                                           |            |              | Program Counter                     |  |  |  |
| PSR      | RW                                        | Privileged | 0x01000000   |                                     |  |  |  |
|          |                                           | _          |              | Program Status Register             |  |  |  |
| ASPR     | RW                                        | (2)        | 0x00000000   |                                     |  |  |  |
|          |                                           |            |              |                                     |  |  |  |
|          |                                           |            |              | Application Program Status Register |  |  |  |
| IPSR     | RO                                        | Privileged | 0x00000000   |                                     |  |  |  |
|          |                                           |            |              |                                     |  |  |  |
|          |                                           |            |              | Interrupt Program Status Register   |  |  |  |

# Спецификация микросхем серии 1986ВЕ9ху, К1986ВЕ9ху, К1986ВЕ9хуК, К1986ВЕ92QС, 1986ВЕ91Н4, К1986ВЕ91Н4, 1986ВЕ94Н4, К1986ВЕ94Н4

| ESPR      | RO | Privileged | 0x01000000 |                                   |
|-----------|----|------------|------------|-----------------------------------|
|           |    |            |            |                                   |
|           |    |            |            | Execution Program Status Register |
| PRIMASK   | RW | Privileged | 0x00000000 |                                   |
|           |    |            |            | Priority Mask Register            |
| FAULTMASK | RW | Privileged | 0x00000000 |                                   |
|           |    |            |            | Fault Mask Register               |
| BASEPRI   | RW | Privileged | 0x00000000 |                                   |
|           |    |            |            | Base Priority Mask Register       |
| CONTROL   | RW | Privileged | 0x00000000 |                                   |
|           |    |            |            | CONTROL Register                  |

1. thread handler

2.

#### 10.3.1 Регистры общего назначения R0-R12

R0-R12 - 32-

#### 10.3.2 Указатель стека SP R13

Stack Pointer Register (SP) - R13. Thread 1 CONTROL

0 – Main Stack Pointer (MSP).

1 – Process Stack Pointer (PSP).

MSP 0x00000000.

#### 10.3.3 Регистр связи LR R14

Link Register - R14.

Oxffffffff.

#### 10.3.4 Счетчик команд РС R15

Program Counter – R15. . 0

0,

0x0000004.

#### 10.3.5 Программный регистр состояния PSR

Program Status Register (PSR)

- Application Program Status Register (APSR);
- Interrupt Program Status Register (IPSR);
- Execution Program Status Register (EPSR).

32- PSR.

MSR MRS.

- , PSR MRS ; - APSR, APSR MSR

Таблица 35 – Комбинация PSR и их атрибуты

| Регистр | Тип        | Комбинация      |  |
|---------|------------|-----------------|--|
| PSR     | RW (1),(2) | APSR, EPSR IPSR |  |
| IEPSR   | RO         | EPSR IPSR       |  |
| IAPSR   | RW(1)      | APSR IPSR       |  |
| EAPSR   | RW(2)      | APSR EPSR       |  |

3. IPSR

4. EPSR ,

MRS MSR.

#### 10.3.6 Программный регистр состояния приложения APSR

**APSR** 

#### Таблица 36 – Регистр APSR

| Номер  | 31  | 30  | 29  | 28  | 27  | 260 |
|--------|-----|-----|-----|-----|-----|-----|
| Доступ | R/W | R/W | R/W | R/W | R/W |     |
| Сброс  | 0   | 0   | 0   | 0   | 0   |     |
|        | N   | Z   | C   | V   | Q   | -   |

## Таблица 37 – Описание бит регистра APSR

| No   | Функциональное | Расшифровка функционального имени бита, краткое описание |  |  |  |  |  |  |
|------|----------------|----------------------------------------------------------|--|--|--|--|--|--|
| бита | имя бита       | назначения и принимаемых значений                        |  |  |  |  |  |  |
| 31   | N              | Negative                                                 |  |  |  |  |  |  |
|      |                | 0 – , «                                                  |  |  |  |  |  |  |
|      |                | »;                                                       |  |  |  |  |  |  |
|      |                | 1 – , « ».                                               |  |  |  |  |  |  |
| 30   | Z              | Zero:                                                    |  |  |  |  |  |  |
|      |                | 0 – ;                                                    |  |  |  |  |  |  |
|      |                | 1 – .                                                    |  |  |  |  |  |  |
| 29   | С              | Carry:                                                   |  |  |  |  |  |  |
|      |                | 0-                                                       |  |  |  |  |  |  |
|      |                | ;                                                        |  |  |  |  |  |  |
|      |                | 1 – ,                                                    |  |  |  |  |  |  |
| 28   | V              | Overflow:                                                |  |  |  |  |  |  |
|      |                | 0 – ;                                                    |  |  |  |  |  |  |
|      |                | 1 –                                                      |  |  |  |  |  |  |

## Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| 27  | Q | Saturation: |   |   |      |      |
|-----|---|-------------|---|---|------|------|
|     |   | 0 –         | , |   |      |      |
|     |   |             |   | ; |      |      |
|     |   | 1 –         | , |   |      | SSAT |
|     |   | USAT        |   |   |      |      |
|     |   |             |   |   | MRS. |      |
| 260 | - |             |   |   |      |      |

## 10.3.7 Программный регистр состояния прерываний IPSR

**IPSR** 

### Таблица 38 – Регистр IPSR

| Номер  | 319 | 80         |
|--------|-----|------------|
| Доступ | -   | RO         |
| Сброс  | -   | 0          |
|        | •   | ISR_NUMBER |

## Таблица 39 – Описание бит регистра IPSR

| N₂   | Функциональное | Расшифровка функционального имени бита, крать | coe      |
|------|----------------|-----------------------------------------------|----------|
| бита | имя бита       | описание назначения и принимаемых значений    |          |
| 319  | -              |                                               |          |
| 80   | ISR_NUMBER     | Номер текущего исключения                     |          |
|      |                | 0-Thread ;                                    |          |
|      |                | 1- ;                                          |          |
|      |                | 2 – NMI;                                      |          |
|      |                | 3 – Hard Fault;                               |          |
|      |                | 4 – Memory Management Fault;                  |          |
|      |                | 5 – Bus Fault;                                |          |
|      |                | 6 – Usage Fault;                              |          |
|      |                | 710 – ;                                       |          |
|      |                | 11 – SVCall;                                  |          |
|      |                | 12 – ;                                        |          |
|      |                | 13 – PendSV;                                  |          |
|      |                | 15 – SysTick;                                 |          |
|      |                | 16 – IRQ0;                                    |          |
|      |                |                                               |          |
|      |                | 48 – IRQ31.                                   |          |
|      |                |                                               |          |
|      |                | <b>«</b>                                      | <b>»</b> |

### 10.3.8 Программный регистр состояния выполнения EPSR

EPSR Thumb

- If-Then (IT)

- Interruptible-Continuable Instruction (ICI)

#### Таблица 40 – Регистр EPSR

| Номер  | 3127 | 2625   | 24 | 2316 | 1510   | 90 |
|--------|------|--------|----|------|--------|----|
| Доступ |      | RO     | RO |      | RO     |    |
| Сброс  |      | 0      | 1  |      | 0      |    |
|        | -    | ICI/IT | T  | -    | ICI/IT | -  |

#### Таблица 41 – Описание бит регистра EPSR

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |                                       |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|--|
| 3127      | -                       |                                                                                            |                                       |  |
| 2625      | ICI/IT                  | ICI:                                                                                       | Interruptible-Continuable Instruction |  |
|           |                         | IT:                                                                                        | IT                                    |  |
| 24        | T                       |                                                                                            | 1                                     |  |
| 2316      | -                       |                                                                                            |                                       |  |
| 1510      | ICI/IT                  | ICI:                                                                                       | Interruptible-Continuable Instruction |  |
|           |                         | IT:                                                                                        | IT                                    |  |
| 90        | -                       |                                                                                            |                                       |  |

**EPSR MSR** EPSR, MSR, EPSR, Interruptible-Continuable Instruction 10.3.8.1 LDM STM, EPSR[15:12]. EPSR[15:12]; **EPSR** ICI [26:25] [11:10] If-Then блок инструкций 10.3.8.2 If-Then 16-IT. IT.

# 10.3.9 Регистр маски исключений Exception mask

MSR MRS,

CPS MSR, MRS CPS. PRIMASK FAULTMASK.

# 10.3.10 Регистр маски приоритетов Priority Mask

**PRIMASK** 

# Таблица 42 – Регистр PRIMASK

| Номер  | 311 | 0       |
|--------|-----|---------|
| Доступ | U   | R/W     |
| Сброс  | 0   | 0       |
|        | •   | PRIMASK |

# Таблица 43 – Описание бит регистра PRIMASK

| №    | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 311  | •              |                                                 |
| 0    | PRIMASK        | 0 – .                                           |
|      |                | 1 –                                             |
|      |                |                                                 |

# 10.3.11 Регистр маски сбоев Fault Mask

**FAULTMASK** 

# Таблица 44 – Регистр FAULTMASK

| Номер<br>Доступ | 311<br>II | R/W       |
|-----------------|-----------|-----------|
| Сброс           | 0         | 0         |
| •               | -         | FAULTMASK |

# Таблица 45 – Описание бит регистра FAULTMASK

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|
| 311       | -                          |                                                                                            |
| 0         | FAULTMASK                  | 0 – .                                                                                      |
|           |                            | 1 –                                                                                        |

**FAULTMASK** 

NMI

# 10.3.12 Регистр базового приоритета маски Base Priority Mask

**BASEPRI** 

**BASEPRI** 

#### BASEPRI.

# Таблица 46 – Регистр BASEPRI

| Номер  | 318 | 70      |
|--------|-----|---------|
| Доступ | U   | R/W     |
| Сброс  | 0   | 0       |
|        | -   | BASEPRI |

# Таблица 47 – Описание бит регистра BASEPRI

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита,<br>краткое описание назначения и принимаемых значений |
|-----------|-------------------------|-----------------------------------------------------------------------------------------------|
| 318       | -                       |                                                                                               |
| 70        | BASEPRI                 | 0 – .                                                                                         |
|           |                         | _                                                                                             |
|           |                         |                                                                                               |

BASEPRI.

[7:5] , [4:0]

447 -

# 10.3.13 Регистр управления CONTROL

CONTROL Thread

# Таблица 48 – Регистр CONTROL

| Номер  | 312 | 1            | 0               |
|--------|-----|--------------|-----------------|
| Доступ | U   | R/W          | R/W             |
| Сброс  | 0   | 0            | 0               |
|        | -   | Active Stack | Thread Mode     |
|        |     | Pointer      | Privilege Level |

# Таблица 49 – Описание бит регистра CONTROL

| №    | Функциональное  | Расшифровка функционального имени бита, краткое описание |  |  |  |
|------|-----------------|----------------------------------------------------------|--|--|--|
| бита | имя бита        | назначения и принимаемых значений                        |  |  |  |
| 312  | -               |                                                          |  |  |  |
| 1    | Active Stack    | 0-MSP                                                    |  |  |  |
| 1    | Pointer         | 1 – PSP                                                  |  |  |  |
| 0    | Thread Mode     | 0 –                                                      |  |  |  |
| U    | Privilege Level | 1 –                                                      |  |  |  |

| Han       | dler                                      | Active Stack         | Pointer | MSP,<br>CONTROL<br>CONTROL. | handler     |          |
|-----------|-------------------------------------------|----------------------|---------|-----------------------------|-------------|----------|
| ,         | PSP                                       | ,                    |         | ,                           | MSP         | Thread . |
| Thread 1, | PSP ,                                     | Thread<br>MSR<br>MSR | MSP.    | Act                         | ive Stack l | Pointer  |
|           | ISB.                                      | ISR .                |         |                             | ,           | ISB      |
| 10.       | 4 Исключени                               | я и прерыван         | ия      |                             |             |          |
|           | AR                                        | M Cortex-M3<br>NVIC  |         |                             |             |          |
|           | handler                                   |                      |         |                             | ٠           |          |
| NVIC»     | NVIC                                      |                      |         | «                           |             |          |
| •         | 32- words;<br>16- halfwords;<br>8- bytes. |                      | :       |                             |             |          |
|           |                                           | 64-                  |         |                             |             |          |
| ,         | Private Peripho                           | eral Bus (PPB)       |         | -endian .<br>-endian .      | «           |          |

# 11 Система команд

Таблица 50 – Система команд процессора Cortex-M3

| Мнемокод  | Операнды                | Краткое описание | Флаги   | Прим. |
|-----------|-------------------------|------------------|---------|-------|
| команды   |                         |                  |         |       |
| ADC, ADCS | {Rd,} Rn, Op2           |                  | N,Z,C,V |       |
| ADD, ADDS | {Rd,} Rn, Op2           |                  | N,Z,C,V |       |
| ADD, ADDW | {Rd,} Rn, #imm12        |                  | N,Z,C,V |       |
| ADR       | Rd, label               | ,                | -       |       |
| AND, ANDS | {Rd,} Rn, Op2           |                  | N,Z,C   |       |
| ASR, ASRS | Rd, Rm, <rs #n></rs #n> |                  | N,Z,C   |       |
| В         | label                   |                  | -       |       |
| BFC       | Rd, #lsb, #width        |                  | -       |       |
| BFI       | Rd,Rn,#lsb,#width       |                  | -       |       |
| BIC, BICS | {Rd,} Rn, Op 2          |                  | N,Z,C   |       |
| BKPT      | #imm                    |                  | -       |       |
| BL        | label                   |                  | -       |       |
| BLX       | Rm                      |                  | -       |       |
| BX        | Rm                      |                  | _       |       |
| CBNZ      | Rn, label               |                  | -       |       |
| CBZ       | Rn, label               |                  | -       |       |
| CLREX     | -                       |                  | -       |       |
| CLZ       | Rd, Rm                  |                  | -       |       |
| CMN, CMNS | Rn, Op2                 |                  | N,Z,C,V |       |
| CMP, CMPS | Rn, Op2                 |                  | N,Z,C,V |       |
| CPSID     | iflags                  | ,                | -       |       |
| CPSIE     | iflags                  | ,                | -       |       |

| <b>Мнемокод</b> команды | Операнды                | Краткое описание | Флаги   | Прим. |
|-------------------------|-------------------------|------------------|---------|-------|
| DMB                     | -                       |                  | -       |       |
| DSB                     | -                       |                  | -       |       |
| EOR, EORS               | {Rd,} Rn, Op2           |                  | N,Z,C   |       |
| ISB                     | -                       |                  | -       |       |
| IT                      | -                       |                  | -       |       |
| LDM                     | Rn{!}, reglist          | 1                | -       |       |
| LDMDB,<br>LDMEA         | Rn{!}, reglist          | ,                | -       |       |
| LDMFD,                  | Rn{!}, reglist          |                  | _       |       |
| LDMIA                   | 111(1),1081100          | ,                |         |       |
| LDR                     | Rt, [Rn, #offset]       |                  | -       |       |
| LDRB,                   | Rt, [Rn, #offset]       |                  | -       |       |
| LDRBT                   |                         |                  |         |       |
| LDRD                    | Rt, Rt2, [Rn,#offset]   |                  | -       |       |
| LDREX                   | Rt, [Rn, #offset]       |                  | -       |       |
| LDREXB                  | Rt, [Rn]                | ,                | -       |       |
| LDREXH                  | Rt, [Rn]                | ,                | -       |       |
| LDRH,<br>LDRHT          | Rt, [Rn, #offset]       |                  | -       |       |
| LDRSB,<br>LDRSBT        | Rt, [Rn, #offset]       |                  | -       |       |
| LDRSH,<br>LDRSHT        | Rt, [Rn, #offset]       |                  | -       |       |
| LDRT                    | Rt, [Rn, #offset]       |                  | -       |       |
| LSL, LSLS               | Rd, Rm, <rs #n></rs #n> |                  | N,Z,C   |       |
| LSR, LSRS               | Rd, Rm, <rs #n></rs #n> |                  | N,Z,C   |       |
| MLA                     | Rd, Rn, Rm, Ra          | , 32-            | -       |       |
| MLS                     | Rd, Rn, Rm, Ra          | , 32-            | -       |       |
| MOV, MOVS               | Rd, Op2                 |                  | N,Z,C   |       |
| MOVT                    | Rd, #imm16              |                  | -       |       |
| MOVW,<br>MOV            | Rd, #imm16              | 16-              | N,Z,C   |       |
| MRS                     | Rd, spec_reg            |                  | -       |       |
| MSR                     | spec_reg, Rm            |                  | N,Z,C,V |       |
| MUL, MULS               | {Rd,} Rn, Rm            | , 32-            | N,Z     |       |

| Мнемокод<br>команды | Операнды                | Крат | кое описан | ие    | Флаги   | Прим. |
|---------------------|-------------------------|------|------------|-------|---------|-------|
| MVN,                | Rd, Op2                 |      |            |       | N,Z,C   |       |
| MVNS                | , 1                     |      |            |       |         |       |
| NOP                 | -                       |      |            |       | -       |       |
| ORN, ORNS           | {Rd,} Rn, Op2           |      | -          |       | N,Z,C   |       |
| ORR, ORRS           | {Rd,} Rn, Op2           |      |            |       | N,Z,C   |       |
| POP                 | reglist                 |      |            |       | _       |       |
| PUSH                | reglist                 |      |            |       | -       |       |
| RBIT                | Rd, Rn                  |      |            |       | -       |       |
| REV                 | Rd, Rn                  |      |            |       | -       |       |
| REV16               | Rd, Rn                  |      |            |       | -       |       |
| REVSH               | Rd, Rn                  |      |            | ,     | -       |       |
| ROR, RORS           | Rd, Rm, <rs #n></rs #n> |      |            |       | NZC     |       |
|                     |                         |      |            |       | N,Z,C   |       |
| RRX, RRXS           | Rd, Rm                  |      |            |       | N,Z,C   |       |
| RSB, RSBS           | {Rd,} Rn, Op2           |      |            |       | N,Z,C,V |       |
| SBC, SBCS           | {Rd,} Rn, Op2           |      |            |       | N,Z,C,V |       |
| SBFX                | Rd, Rn, #lsb, #width    |      |            | ,     | -       |       |
| SDIV                | {Rd,} Rn, Rm            |      |            |       | -       |       |
| SEV                 | -                       |      |            |       | -       |       |
| SMLAL               | RdLo, RdHi, Rn, Rm      | . (  | 64-        |       | -       |       |
| SMULL               | RdLo, RdHi, Rn, Rm      | ,    |            | , 64- | -       |       |
| SSAT                | Rd,#n,Rm{,shift#s}      | n-   | 32-        | ,     | Q       |       |
| STM                 | Rn{!}, reglist          |      |            | ,     | -       |       |
| STMDB,<br>STMEA     | Rn{!}, reglist          |      |            | ,     | -       |       |
| STMFD,<br>STMIA     | Rn{!}, reglist          |      |            | ,     | -       |       |
| STR                 | Rt, [Rn, #offset]       |      |            |       | _       |       |
| STRB,               | Rt, [Rn, #offset]       |      |            |       | _       |       |
| STRBT               | 120, [1311, 11011500]   |      | ,          |       |         |       |
| STRD                | Rt, Rt2, [Rn, #offset]  |      |            | ,     | -       |       |
| STREX               | Rd, Rt, [Rn, #offset]   |      |            |       | -       |       |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| Мнемокод<br>команды | Операнды             | Краткое описание | Флаги   | Прим. |
|---------------------|----------------------|------------------|---------|-------|
| STREXB              | Rd, Rt, [Rn]         | ,                | -       |       |
| STREXH              | Rd, Rt, [Rn]         | ,                | -       |       |
| STRH,<br>STRHT      | Rt, [Rn, #offset]    | ,                | -       |       |
| STRT                | Rt, [Rn, #offset]    | ,                | _       |       |
| SUB, SUBS           | {Rd,} Rn, Op2        | •                | N,Z,C,V |       |
| SUB, SUBW           | {Rd,} Rn, #imm12     |                  | N,Z,C,V |       |
| SVC                 | #imm                 |                  | _       |       |
| SXTB                | {Rd,}Rm{,ROR#n}      |                  | -       |       |
| SXTH                | {Rd,}Rm{,ROR#n}      |                  | -       |       |
| TBB                 | [Rn, Rm]             | ,                | -       |       |
| ТВН                 | [Rn, Rm, LSL #1]     | ,                | -       |       |
| TEQ                 | Rn, Op2              |                  | N,Z,C   |       |
| TST                 | Rn, Op2              |                  | N,Z,C   |       |
| UBFX                | Rd, Rn, #lsb, #width | ,                | -       |       |
| UDIV                | {Rd,} Rn, Rm         |                  | -       |       |
| UMLAL               | RdLo, RdHi, Rn, Rm   | , 64-            | -       |       |
| UMULL               | RdLo, RdHi, Rn, Rm   | , 64-            | -       |       |
| USAT                | Rd,#n,Rm{,shift#s}   | 32-<br>n- ,      | Q       |       |
| UXTB                | {Rd,}Rm{,ROR#n}      |                  | -       |       |
| UXTH                | {Rd,}Rm{,ROR#n}      |                  | -       |       |
| WFE                 | -                    |                  | -       |       |
| WFI                 | -                    |                  | _       |       |

# 11.1 Встроенные функции

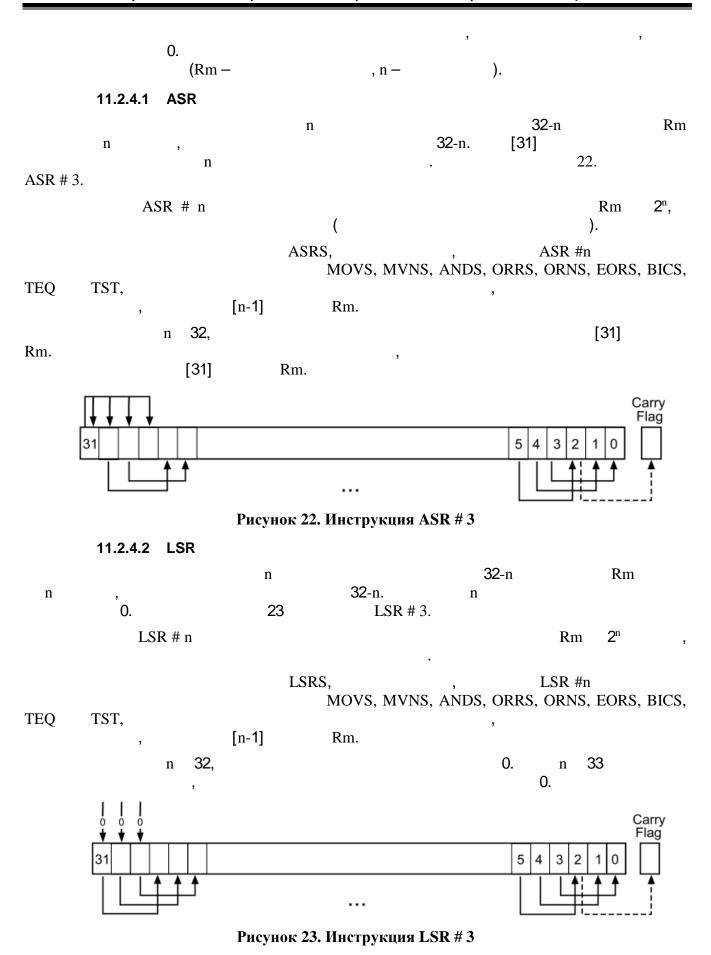
ANSI C
Cortex-M3. (intrinsic)

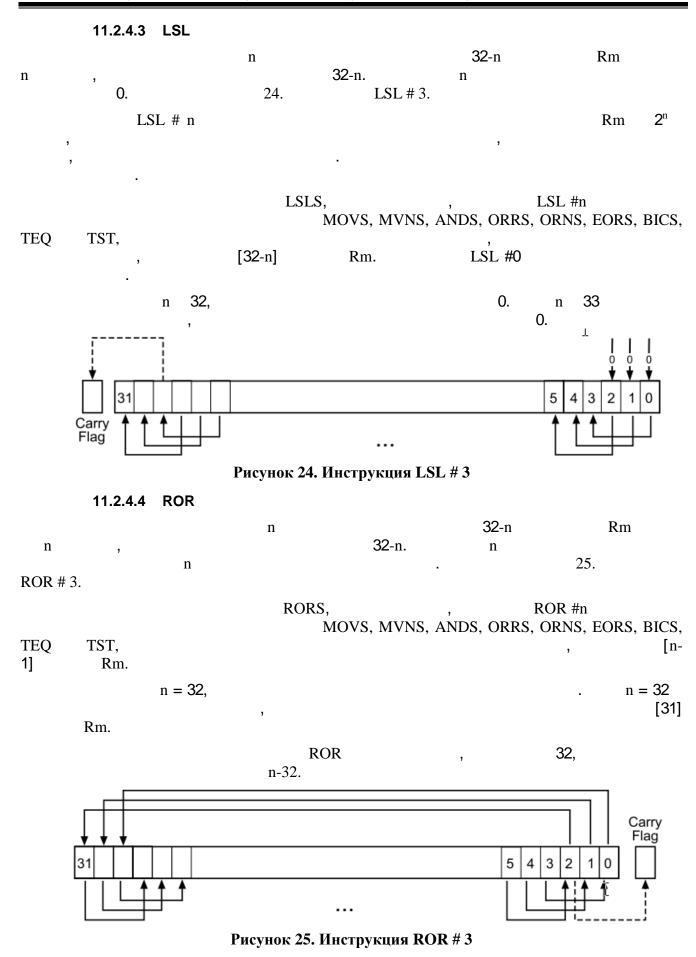
CMSIS ANSI C.

Таблица 51 – Встроенные функции CMSIS, позволяющие генерировать некоторые инструкции процессора Cortex-M3

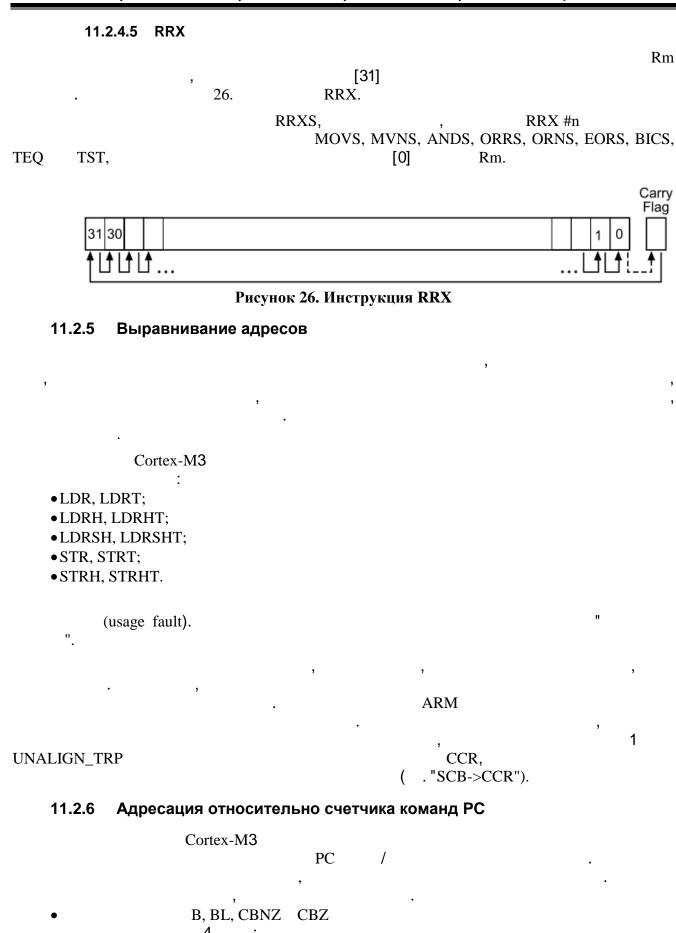
| Мнемокод команды процессора | Описание встроенной функции       |  |
|-----------------------------|-----------------------------------|--|
| CPSIE I                     | voidenable_irq(void)              |  |
| CPSID I                     | voiddisable_irq(void)             |  |
| CPSIE F                     | voidenable_fault_irq(void)        |  |
| CPSID F                     | voiddisable_fault_irq(void)       |  |
| ISB                         | voidISB(void)                     |  |
| DSB                         | voidDSB(void)                     |  |
| DMB                         | voidDMB(void)                     |  |
| REV                         | uint32_tREV(uint32_t int value)   |  |
| REV16                       | uint32_tREV16(uint32_t int value) |  |
| REVSH                       | uint32_tREVSH(uint32_t int value) |  |
| RBIT                        | uint32_tRBIT(uint32_t int value)  |  |
| SEV                         | voidSEV(void)                     |  |
| WFE                         | voidWFE(void)                     |  |
| WFI                         | voidWFI(void)                     |  |

, CMSIS


MRS MSR.


Таблица 52 — Встроенные функции CMSIS для доступа к специальным регистрам процессора

| Наименование<br>специального<br>регистра | Режим доступа | Описание встроенной функции                      |
|------------------------------------------|---------------|--------------------------------------------------|
| PRIMASK                                  |               | uint32_tget_PRIMASK (void)                       |
| PKIMASK                                  |               | voidset_PRIMASK (uint32_t value)                 |
| FAULTMASK                                |               | uint32_tget_FAULTMASK (void)                     |
| FAULTMASK                                |               | voidset_FAULTMASK (uint32_t value)               |
| BASEPRI                                  |               | uint32_tget_BASEPRI (void)                       |
| DASEFKI                                  |               | voidset_BASEPRI (uint32_t value)                 |
| CONTROL                                  |               | uint32_tget_CONTROL (void)                       |
| CONTROL                                  |               | voidset_CONTROL (uint32_t value)                 |
| MSP                                      |               | uint32_tget_MSP (void)                           |
| MSP                                      |               | <pre>voidset_MSP (uint32_t TopOfMainStack)</pre> |
| PSP                                      |               | uint32_tget_PSP (void)                           |
| rar                                      |               | voidset_PSP (uint32_t TopOfProcStack)            |


# 11.2 Описание инструкций PC SP; 11.2.1 Операнды 11.2.2 Ограничения на использование РС и SP (PC) (SP) PC BX, BLX, LDM, LDR [0] **POP** Cortex-M3 Thumb. 11.2.3 Формат второго операнда Operand2. 11.2.3.1 Константа #constant constant 32-0x00XY00XY; 0xXY00XY00; 0xXYXYXYXY. X Y

constant Operand2 MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ **TST** 255 [31] Operand2 CMP Rd, #0xFFFFFFE CMN Rd, #0x2. 11.2.3.2 Регистр с необязательным параметром сдвига Operand2 Rm {, shift} Rm – shift -Rm. ASR #n -LSL #n n 31; LSR #n -, 1 n 32; ROR #n -, 1 n 31; RRX -LSL #0. Rm 32-Rm, Rm 11.2.4 Операции сдвига ASR, LSR, LSL, ROR RRX, Operand2 0, . 95).





© АО «ПКК Миландр»



```
[1]
                                                                     0
             4
                     PC,
        [PC, #number].
     11.2.7 Условное исполнение
                                 (APSR)
«
                                          APSR»).
                                                                                   53
                                                      IT-
                    CBZ CBNZ.
         11.2.7.1 Флаги условий
                                           APSR
        N=1
                                                      , 0
        Z=1
                                            , 0
                                                               , 0
        C=1
        V=1
                                                                      , 0
                           APSR
                                                      «
PSR».
```

• 232;

• ;

.

 $2^{31}$ ,  $-2^{31}$ .

S. . . .

# 11.2.7.2 Суффиксы условного исполнения

.  $\label{eq:cond} \{ cond \}.$  IT.

11

APSR. ( 53).

# Таблица 53 – Суффиксы условного исполнения

| Суффикс | Флаги              | Значение |
|---------|--------------------|----------|
| EQ      | Z = 1              |          |
| NE      | Z = 0              |          |
| CS HS   | C = 1              | ,        |
| CC LO   | C = 0              | ,        |
| MI      | N = 1              |          |
| PL      | N = 0              |          |
| VS      | V = 1              |          |
| VC      | V = 0              |          |
| HI      | C = 1 and $Z = 0$  | ,        |
| LS      | C = 0  or  Z = 1   | ,        |
| GE      | N = V              | ,        |
| LT      | N != V             | ,        |
| GT      | Z = 0 and $N = V$  | ,        |
| LE      | Z = 1 and $N != V$ | ,        |
| AL      | 1                  |          |

# 11.2.7.3 Пример. Вычисление абсолютного значения

: R0 = ABS(R1).

MOVS R0, R1; R0 = R1,

IT MI; IT

RSBMI R0, R1, #0; R0 = -R1

11.2.7.4 Пример. Сравнение и изменение значения регистра

#### R0 R1 R2 R4 R3. CMP R0, R1; R0 R1, ITT GT; IT CMPGT R2, R3; R0>R1, R2 R3, MOVGT R4, R5; R4 = R511.2.8 Выбор размера кода инструкции Cortex-M3 16-

32-

# 11.3 Команды доступа к памяти

54.

Таблица 54 – Команды доступа к памяти

| Мнемокод    | Краткое описание | Прим. |
|-------------|------------------|-------|
| ADR         | ,                |       |
| CLREX       |                  |       |
| LDM{mode}   |                  |       |
| LDR{type}   | 1                |       |
| LDR{type}   | ,                |       |
| LDR{type}T  |                  |       |
| LDR         |                  |       |
| LDREX{type} |                  |       |
| POP         |                  |       |
| PUSH        |                  |       |
| STM{mode}   |                  |       |
| STR{type}   | ,                |       |
|             |                  |       |
| STR{type}   | ,                |       |
| STR{type}T  |                  | _     |
| STREX{type} |                  |       |

# 11.3.1 ADR Синтаксис ADR{cond} Rd, label cond -Rd label -Описание **ADR** PC ADR BXBLX[0] 1. PC -4095...+4095. .W ( . « »). Ограничения SP PC. Rd Флаги

TextMessage,

R1.

Примеры

ADR R1, TextMessage

# 11.3.2 LDR и STR, непосредственно заданное смещение

```
11.3.2.1 Синтаксис
op{type}{cond} Rt, [Rn {, #offset}] ;
op{type}{cond} Rt, [Rn, #offset]!
op{type}{cond} Rt, [Rn], #offset
opD{cond} Rt, Rt2, [Rn {, #offset}] ;
opD{cond} Rt, Rt2, [Rn, #offset]!
opD{cond} Rt, Rt2, [Rn], #offset
op –
     - LDR -
     - STR -
type –
     - B -
     - SB -
                                  LDR);
     - H -
     - SH-
                                         LDR);
                     -32-
cond -
Rt -
Rn -
                                              Rn.
offset -
Rt2 -
    11.3.2.2 Описание
LDR -
STR -
    11.3.2.3 Адресация со смещением
                                                                         Rn.
                                                             Rn
       [Rn, #offset].
```

# 11.3.2.4 Адресация с пре-индексированием

Rn. , Rn.

.....

[Rn, #offset]!.

# 11.3.2.5 Адресация с пост-индексированием

Rn .

Rn,

Rn.

[Rn], #offset .

,

- ." ". 55

Таблица 55 – Диапазон значений смещения

| Тип инструкции | Смещение  | Преиндексирование Пост-индексир |            |  |  |
|----------------|-----------|---------------------------------|------------|--|--|
| , ,            | -255 4095 | -255 255                        | -255 255   |  |  |
|                | ,         | 4,                              | -1020 1020 |  |  |

# 11.3.2.6 Ограничения

:

• Rt PC SP

• Rt Rt2

• - - Rn

Rt Rt2.

Rt

PC:
• [0] 1;

• , [0] 0;

• IT-

•

• Rt SP ;

Rt Rn
 - - - Rn

Rt Rt2.

11.3.2.7 Флаги

11.3.2.8 Примеры LDR R8, [R10] R8 R10. LDRNE R2, [R5, #960]! R2 960 ; R5, R5 960. STR R2, [R9,#const-struc] ; const-struc -0-4095. R3, STRH R3, [R4], #4 R4, R4 4 R8 32 LDRD R8, R9, [R3, #0x20] R9 R3, 36 R3 R0 R8, STRD R0, R1, [R8], #-16 R1 4 R8, R8 16.

# 11.3.3 LDR и STR, смещение задано в регистре

```
11.3.3.1 Синтаксис
      op\{type\}\{cond\}\ Rt, [Rn, Rm \{, LSL \#n\}]
op -
     - LDR
     - STR
type -
     - B -
     - SB -
                                  LDR).
     - H -
     - SH-
                                        LDR).
                    -32-
cond -
Rt -
Rn -
Rm -
                                                     0
                                                          3.
LSL #n -
    11.3.3.2 Описание
LDR -
STR -
                                           Rn
             Rm
    11.3.3.3 Ограничения
    Rn
                                      PC;
    Rm
                     SP
                            PC;
                                    SP
                          Rt
                                    PC
                          Rt
                                                           Rt
           PC:
       [0]
                                                  1,
```

• IT-

11.3.3.4 Флаги

11.3.3.5 Примеры

STR R0, [R5, R1] ; R0 , R5 R1

LDRSB R0, [R5, R1, LSL #1]
; , R5 R1,

;

; ; R0

STR R0, [R1, R2, LSL #2]

; R0 , R1+4\*R2.

# 11.3.4 LDR and STR, непривилегированный доступ

```
Синтаксис
            <u>11.3.4.1</u>
      op{type}T{cond} Rt, [Rn {, #offset}]
op –
    - LDR
    - STR
      type –
      В -
    - SB -
                                LDR).
    - H -
    - SH-
                                      LDR).
                   -32-
cond -
Rt -
Rn -
                                                          0
                                                               255.
offset -
                                          Rn
    11.3.4.2 Описание
                                                                  . "LDR STR,
    11.3.4.3 Ограничения
   Rn
                                    PC
   Rt
                   SP
                         PC.
    11.3.4.4 Флаги
    11.3.4.5 Примеры
      STRBTEQ R4, [R7];
                                                                         R4
                                        R7,
      LDRHT R2, [R2, #8]
                                         R2,
                          R2 8
```

# LDR, адресация относительно счетчика команд PC

```
11.3.4.6 Синтаксис
           LDR{type}{cond} Rt, label
           LDRD{cond} Rt, Rt2, label; Load two words
    type –
         - B -
         - SB -
                                          LDR).
         - H -
          - SH -
                                                LDR).
                         -32-
    cond -
    Rt -
    Rt2 -
                                                                          PC".
    label -
         11.3.4.7 Описание
    LDR -
PC,
        56
               .W
```

# Таблица 56 – Диапазон значений смещения

| Тип инструкции | Диапазон значений смещения |  |  |  |
|----------------|----------------------------|--|--|--|
| ,              | -4095 4095                 |  |  |  |
|                | -1020 1020                 |  |  |  |

# 11.3.4.8 Ограничения

```
    Rt PC SP ;
    Rt2 PC SP;
    Rt Rt2
```

РС:
• [0] 1, ;
• 11.3.4.9 Флаги

11.3.4.10 Примеры

LDR R0, LookUpTable ; R0

LDRSB R7, localdata ; localdata, ; R7.

# 11.3.5 LDM и STM

```
11.3.5.1 Синтаксис
      op{addr_mode}{cond} Rn{!}, reglist
op -
      LDM
      STM
    - addr_mode -
      IA -
    - DB -
cond -
Rn -
                                         Rn.
reglist -
                                                LDMIA.
           LDM
                   LDMFD
                                                                      LDMFD
                                                    (Full Descending stack).
          LDMEA
                                       LDMDB,
                                         (Empty Ascending stack).
                                                 STMIA.
           STM
                   STMEA
                                                                       STMEA
          STMFD
                                       STMDB,
    11.3.5.2 Описание
           LDM
                                                         reglist,
                                               Rn.
           STM
 reglist,
                                                   Rn.
        LDM, LDMIA, LDMFD, STM, STMIA
                     Rn+4*(n-1),
                                                                 reglist.
               Rn
```

```
"!",
                                                                 Rn+4*(n-1)
                   Rn.
    LDMDB, LDMEA, STMDB
                               STMFD
           Rn-4*(n-1),
    Rn
                                                              reglist.
                          n -
                                                     "!",
                                                                  Rn-4*(n-1)
                   Rn.
                POP
                                                              LDM
                                                                      STM.
       PUSH
              "PUSH
                       POP".
11.3.5.3 Ограничения
              Rn
                                                  PC;
            reglist
                                                  SP;
               STM
                                     reglist
                                                          PC;
               LDM reglist
                                                        PC LR;
                                                         "!".
   reglist
                           Rn
                                                            PC:
                  LDM
                                        reglist
[0]
                                         1,
                                                                     IT-
11.3.5.4 Флаги
11.3.5.5 Примеры
                                      LDM
 LDM R8,\{R0,R2,R9\}; LDMIA -
 STMDB R1!,{R3-R6,R11,R12}
11.3.5.6 Примеры неправильного использования
                                          R5
 STM R5!,{R5,R4,R9};
 LDM R2, {}
```

# 11.3.6 PUSH и POP

```
(full-descending stack).
    11.3.6.1 Синтаксис
      PUSH{cond} reglist
      POP{cond} reglist
cond -
reglist -
                                                               )
        PUSH POP
                                               STMDB LDM (LDMIA)
                                                    SP,
           PUSH POP
    11.3.6.2 Описание
PUSH -
POP -
                        "LDM STM".
    11.3.6.3 Ограничения
                                                          SP;
                   reglist
                PUSH
                                                                      PC;
                POP
                                                                            PC
     LR.
                       POP
                                            reglist
                                                                PC:
       [0]
                                                1,
                                                                            IT-
    11.3.6.4 Флаги
    11.3.6.5 Примеры
      PUSH {R0,R4-R7}
      PUSH {R2,LR}
      POP {R0,R10,PC}
```

# 11.3.7 LDREX и STREX

```
11.3.7.1 Синтаксис
      LDREX{cond} Rt, [Rn {, #offset}]
     STREX{cond} Rd, Rt, [Rn {, #offset}]
      LDREXB{cond} Rt, [Rn]
     STREXB{cond} Rd, Rt, [Rn]
      LDREXH{cond} Rt, [Rn]
      STREXH{cond} Rd, Rt, [Rn]
cond -
Rd -
Rt -
Rn -
offset -
    11.3.7.2 Описание
        LDREX, LDREXB
                           LDREXH
         STREX, STREXB
                            STREXH
```

0.

0

|      | 11.3.7.3 | Ограничения          |       |           |   |   |         |        |      |
|------|----------|----------------------|-------|-----------|---|---|---------|--------|------|
| •    |          | :<br>STREX<br>offset | Rd    | PC;<br>SP | 4 |   | Rd Ri   | Rt Rn; | 020. |
|      | 11.3.7.4 | Флаги                |       |           |   |   |         |        |      |
|      | 11.3.7.5 | Примеры              |       |           |   |   |         |        |      |
|      | MOV F    | R1, #0x1             | :     | ,         |   |   | R1      | ,      |      |
| try: |          |                      |       |           |   |   |         |        |      |
|      | LDREX    | K R0, [LockAddr]     |       | ;         |   |   |         |        |      |
|      | CMP R    | .0, #0               |       | ;         |   |   | ?       |        |      |
|      | ITT EQ   | )                    | ;     | IT        |   |   | STREXEQ | CMPEQ  |      |
|      | STREX    | XEQ R0, R1, [LockA   | Addr] | ;         |   |   |         |        |      |
|      | CMPE     | Q R0, #0             |       | ;         |   | ? |         |        |      |
|      | BNE tr   | y                    |       | •         | _ |   |         |        |      |
|      |          |                      | •     | _         |   |   |         |        |      |

# 11.3.8 CLREX

11.3.8.1 Синтаксис

CLREX{cond}

cond – , . " ".

11.3.8.2 Описание

CLREX STREX,

STREXB STREXH 1

, "

11.3.8.3 Флаги

•

11.3.8.4 Примеры

**CLREX** 

# 11.4 Инструкции обработки данных

57

Таблица 57 – Команды обработки данных

| Мнемокод | Краткое описание | Прим. |
|----------|------------------|-------|
| ADC      |                  |       |
| ADD      |                  |       |
| ADDW     |                  |       |
| AND      |                  |       |
| ASR      |                  |       |
| BIC      |                  |       |
| CLZ      |                  |       |
| CMN      |                  |       |
| CMP      |                  |       |
| EOR      |                  |       |
| LSL      |                  |       |
| LSR      |                  |       |
| MOV      |                  |       |
| MOVT     |                  |       |
| MOVW     | 16-              |       |
| MVN      |                  |       |
| ORN      | -                |       |
| ORR      |                  |       |
| RBIT     |                  |       |
| REV      |                  |       |
| REV16    |                  |       |
| REVSH    |                  | -     |
|          | ,                |       |
| ROR      |                  |       |
| RRX      |                  |       |
| RSB      |                  |       |
| SBC      |                  |       |
| SUB      |                  |       |
| SUBW     |                  |       |
| TEQ      |                  |       |
| TST      |                  |       |

# 11.4.1 ADD, ADC, SUB, SBC и RSB 11.4.1.1 Синтаксис op{S}{cond} {Rd,} Rn, Operand2 op{cond} {Rd,} Rn, #imm12; ADD SUB. op -ADD -ADC -SUB -- SBC -RSB -S cond -Rd -Rd Rn. Rn -Operand2 imm12 -4095. 0 11.4.1.2 Описание Operand2 **ADD** imm12 Rn. **ADC** Rn Operand2, SUB Operand2 imm12 Rn. Operand2 SBC Rn. Operand2. RSB Rn Operand2. ADC **SBC** ADR. **ADDW** ADD, 12imm12. **SUBW** SUB, 12imm12. 11.4.1.3 Ограничения Operand2 SP PC;

```
SP
                                  Rd
                                                                 ADD
                                                                        SUB,
                                           SP;
             Rn
          Operand2
                                       3
                                                     LSL;
              SP
                                               Rn
                                                                        SUB;
                                                                   ADD
                 PC
                                                         Rd
ADD{cond} PC, PC, Rm
                                        S;
             Rm
                                           PC
                                               SP;
                                                         IT-
                                                         PC
                  Rn
       SUB (
ADD
                                     ADD{cond} PC, PC, Rm)
                                        S;
                                                 0
                                                     4095.
                     PC
                                                               [1:0]
                         0b00
                                  PC. ARM
               ADR,
               PC
                                         Rd
      ADD{cond} PC, PC, Rm
      [0]
                                  PC,
   11.4.1.4 Флаги
                                    S,
                                                                    N, Z, C
                                                                            V
   11.4.1.5 Примеры
    ADD R2, R1, R3
    SUBS R8, R6, #240
                                                     R4
                                                          1280
    RSB R4, R4, #1280
    ADCHI R11, R0, R3
                                      \mathbf{Z}
                  ; C
   11.4.1.6 Арифметика с повышенной разрядностью
   11.4.1.7 64-разрядное сложение
                                                      64-
                      R2
                           R3.
                                         64-
                                                        R4 R5.
   R0 R1,
    ADDS R4, R0, R2
    ADC R5, R1, R3
```

# 11.4.1.8 96-разрядное вычитание 96-R9, R1 R11, R6, R2 R8. R6, R9 R2. SUBS R6, R6, R9 SBCS R9, R2, R1 SBC R2, R8, R11 11.4.2 AND, ORR, EOR, BIC и ORN 11.4.2.1 Синтаксис op{S}{cond}{Rd,} Rn, Operand2 op -AND -ORR -EOR -BIC -ORN -S cond -Rd -Rn -Operand2 -11.4.2.2 Описание AND, ORR **EOR** Rn, Operand2. BIC Operand2. Rn, **ORN** Rn Operand2 11.4.2.3 Ограничения PC. SP 11.4.2.4 Флаги

• C

• V.

N Z

S,

<u>11.4.2.5</u> <u>Примеры</u>

AND R9, R2,#0xFF00
ORREQ R2, R0,R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC R0, R1, #0xab
ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

## 11.4.3 ASR, LSL, LSR, ROR и RRX

```
11.4.3.1 Синтаксис
      op{S}{cond} Rd, Rm, Rs
      op{S}{cond} Rd, Rm, #n
      RRX{S}{cond} Rd, Rm
op -
    - ASR -
    - LSL -
    - LSR -
    - ROR -
S
cond -
Rd -
Rm -
Rs
                     255.
                 0
n
    - ASR -
                  32;
              1
    - LSL -
                  31;
              0
    - LSR -
              1
                  32:
    - ROR -
                   31.
              1
        LSL{S}{cond} Rd, Rm, #0
                                  MOV{S}{cond} Rd, Rm.
    11.4.3.2 Описание
        ASR, LSL, LSR ROR
                                                   Rm
                                                                Rs.
                                      n
        RRX
                               Rm
                                                                    Rd,
                Rm
    11.4.3.3 Ограничения
                                                                PC.
                                            SP
```

#### 11.4.3.4 Флаги

S, :  $N \quad Z \qquad \qquad ;$ 

## 11.4.3.5 Примеры

ASR R7, R8, #9 ; 9

LSLS R1, R2, #3 ; 3

LSR R4, R5, #6; 6
ROR R4, R5, R6 ;

; R6

RRX R4, R5 ;

## 11.4.4 CLZ

•

#### Синтаксис

CLZ{cond} Rd, Rm

:

cond - , . " ".

Rd - -

Rm - .

#### Описание

CLZ

, Rm, Rd. , 32, , Rm , , 0- [31].

Ограничения

SP PC.

#### Флаги

.

## Примеры

CLZ R4,R9 CLZNE R2,R3.

#### 11.4.5 CMP и CMN

Синтаксис CMP{cond} Rn, Operand2 CMN{cond} Rn, Operand2 cond -Rm -Operand2 -Описание **CMP** Rn Operand2. SUBS, **CMN** Rn Operand2. ADDS, Ограничения PC; SP. Operand2 Флаги N, Z, C V Примеры CMP R2, R9 CMN R0, #6400 CMPGT SP, R7, LSL #2

#### 11.4.6 MOV и MVN

```
11.4.6.1
                  Синтаксис
          MOV{S}{cond} Rd, Operand2
          MOV{cond} Rd, #imm16
          MVN{S}{cond} Rd, Operand2
    S
    cond -
    Rd
    Operand2 -
                                       0
    imm16-
                                           65535.
         11.4.6.2 Описание
                MOV
                                                       Operand2
                                                                        Rd.
    Operand2
                                                               LSL #0.
                          MOV
        ASR{S}{cond} Rd, Rm, #n
                                      MOV{S}{cond} Rd, Rm, ASR #n;
        LSL{S}{cond} Rd, Rm, #n
                                      MOV{S}{cond} Rd, Rm, LSL #n
                                                                        n != 0;
        LSR{S}{cond} Rd, Rm, #n
                                      MOV{S}{cond} Rd, Rm, LSR #n;
        ROR{S}{cond} Rd, Rm, #n
                                      MOV{S}{cond} Rd, Rm, ROR #n;
        RRX{S}{cond} Rd, Rm
                                   MOV{S}{cond} Rd, Rm, RRX.
        Operand2
                             MOV
        MOV{S}{cond} Rd, Rm, ASR Rs
                                                       ASR{S}{cond} Rd, Rm, Rs;
        MOV{S}{cond} Rd, Rm, LSL Rs
                                                       LSL{S}{cond} Rd, Rm, Rs
        MOV{S}{cond} Rd, Rm, LSR Rs
                                                       LSR{S}{cond}Rd,Rm,Rs
        MOV{S}{cond} Rd, Rm, ROR Rs
                                                        ROR{S}{cond} Rd, Rm, Rs.
                                                      RRX.
                                 ASR, LSL, LSR, ROR
                MVN
                                                            Operand2,
                                                       Rd.
                MOVW
                                                              MOV,
imm16.
         11.4.6.3
                  Ограничения
             SP
                  PC
                                                                MOV,
                S
                                                        PC:
                           Rd
            [0]
                                     PC,
```

[0], 0. MOV **ARM** BX BLX, 11.4.6.4 Флаги S, N Z C V. 11.4.6.5 Примеры MOVSR11, #0x000B; 0x000B R11, MOV R1, #0xFA05 0xFA05 R1, R12 R10, MOVS R10, R12 MOV R3, #23 ; 23 R3 R8 MOV R8, SP MVNS R2, #0xF 0xFFFFFF0 ( 0x0F) R2,

#### 11.4.7 MOVT

Синтаксис

MOVT{cond} Rd, #imm16

:

cond - , . " ".

Rd -

imm16 - 0 65535.

Описание

MOVT 16- imm16

- Rd[31:16]. Rd[15:0]

MOV MOVT 32-

Ограничения

Rd SP PC.

Флаги

Примеры

MOVT R3, #0xF123 ; 0xF123 R3,

; APSR

# 11.4.8 REV, REV16, REVSH и RBIT

|   |                                                                                      | •   |                       |              |                          |
|---|--------------------------------------------------------------------------------------|-----|-----------------------|--------------|--------------------------|
|   | Синтаксис                                                                            |     |                       |              |                          |
|   | op{cond} Rd, Rn                                                                      |     |                       |              |                          |
| : | op - : : : : : : : : : : : : : : : : : :                                             |     | ;                     | ;            |                          |
|   | - RBIT - cond - Rd Rn - , .                                                          | 32- | , .                   |              |                          |
|   | • REV - 32-<br>endian .                                                              |     | big-endian            | (endianness) | :<br>little-             |
|   | • REV16 - 32-                                                                        |     | big-endian            |              | little-                  |
|   | endian .  • REVSH 16-                                                                |     | big-endian 32-bit 32- | t 32-        |                          |
|   | Ограничения                                                                          |     | <b>52</b> -           | •            |                          |
|   | Флаги                                                                                | SP  | PC.                   |              |                          |
|   | Примеры  REV R3, R7 ;  REV16 R0, R0 ;  REVSH R0, R5 ;  REVHS R3, R7 ;  RBIT R7, R8 ; |     | 16-<br>"<br>R8,       | R7,          | R3<br>R0<br>" (HS)<br>R7 |
|   |                                                                                      |     |                       |              |                          |

# 11.4.9 TST u TEQ Синтаксис TST{cond} Rn, Operand2 TEQ{cond} Rn, Operand2 cond -Rn -Operand2 -Описание Operand2. **TST** Rn Operand2. ANDS, Rn 0 1, TST Operand2 1, 0. TEQ Rn Operand2. EORS, TEQ C. Ограничения SP PC. Флаги S, N Z $\mathbf{C}$ V. Примеры

TST R0, #0x3F8

TEQEQ R10, R9

R9,

R0

0x3F8,

R10

# 11.5 Инструкции умножения и деления

:

Таблица 58 – Инструкции умножения и деления

| Мнемокод | Краткое описание    |  |  |
|----------|---------------------|--|--|
| MLA      | , 32-               |  |  |
| MLS      | , 32-               |  |  |
| MUL      | , 32-               |  |  |
| SDIV     |                     |  |  |
| SMLAL    | (32 x 32 + 64), 64- |  |  |
|          |                     |  |  |
| SMULL    | , 64-               |  |  |
| UDIV     |                     |  |  |
| UMLAL    | (32 x 32 + 64), 64- |  |  |
|          |                     |  |  |
| UMULL    | , 64-               |  |  |

```
MUL, MLA и MLS
     11.5.1
                                                                      )
                                               (
                                   32-
32-
     Синтаксис
           MUL{S}{cond}{Rd,}Rn,Rm
           MLA{cond} Rd, Rn, Rm, Ra
           MLS{cond} Rd, Rn, Rm, Ra
     S
     cond -
     Rd -
                                                      Rd
                                          Rn.
     Rn, Rm -
     Ra -
     Описание
             MUL
                                                                                Rn
                                                                                     Rm,
                    32
                                                            Rd.
             MLA
                                                      Rn
                                                          Rm,
                                32
                                                                      Rd.
        Ra,
              MLS
                                                      Rn
                                                            Rm,
                                32
                                                                      Rd.
        Ra,
     Ограничения
                                       SP
                                                           PC.
                              MUL
                                                                             S:
                  Rd, Rn Rm
                                                               R0
                                                                    R7;
                Rd
                                      Rm;
                                                                    cond.
     Флаги
                                           S,
                            Ν
                               Ζ
                                    C
                                        ٧.
     Примеры
           MUL R10, R2, R5
                                      ; R10 = R2 \times R5
           MLA R10, R2, R1, R5; R10 = (R2 \times R1) + R5
           MULS R0, R2, R2
                                      ; R0 = R2 \times R2,
           MULLT R2, R3, R2
                                                           R2 = R3 \times R2
           MLS R4, R5, R6, R7
                                      ; R4 = R7 - (R5 \times R6)
```

```
11.5.2
            UMULL, UMLAL, SMULL и SMLAL
                                                                        , 32-
        , 64-
     Синтаксис
          op{cond} RdLo, RdHi, Rn, Rm
    op -
       - UMULL -
       - UMLAL -
       - SMULL -
       - SMLAL -
    Cond
    RdLo, RdHi -
                               UMLAL SMLAL
    Rn, Rm
    Описание
               UMULL
                                                     Rn
                                                           Rm,
                                                                                32
                                                                   RdHi (
   ) RdLo (
                    32
                          ).
                UMLAL
                                                     Rn
                                                           Rm,
                                              64-
                           RdHi
                                 RdLo,
RdHi RdLo.
               SMULL
                                                     Rn
                                                           Rm,
              RdHi (
                            32
                                  ) RdLo (
                                                   32
                                                         ).
                SMLAL
                                                     Rn
                                                          Rm,
                                                                                64-
                                                            RdHi
                                                                   RdLo,
                                 RdHi RdLo.
    Ограничения
                                    SP
                                                       PC.
                  RdHi RdLo
    Флаги
    Примеры
          UMULL R0, R4, R5, R6
                                                         (R4,R0) = R5 \times R6
          SMLAL R4, R5, R3, R8
                                                      (R5,R4) = (R5,R4) + R3 \times R8
```

#### 11.5.3 SDIV и UDIV

Синтаксис SDIV{cond} {Rd,} Rn, Rm UDIV{cond} {Rd,} Rn, Rm cond -Rd -Rd Rn. Rn -Rm -Описание **SDIV** Rn, Rm. UDIV Rn, Rm. Rn Rm, Ограничения SP PC. Флаги Примеры SDIV R0, R2, R4 R0 = R2/R4R8 = R8/R1. UDIV R8, R8, R1

## 11.6 Инструкции преобразования данных с насыщением

SSAT USAT.

```
11.6.1 SSAT и USAT
                  32-
                                            n-
    11.6.1.1 Синтаксис
      op{cond} Rd, #n, Rm {, shift #s}
op -
   - SSAT -
   - USAT -
cond -
Rd -
Rm -
                                                          SSAT
                                  1
                                       32
    - n
                                       31
                                                          USAT.
   - n
shift #s -
                                                                    Rm
   - ASR #s,
                                              1
                                                   31:
    - LSL #s,
                                              0
                                                  31.
                  S
    11.6.1.2 Описание
                           32-
                                                   n-
         SSAT
               -2^{(n-1)} \le x \le 2^{(n-1)} - 1
                                         -2 (n-1).
                                                                         -2^{(n-1)};
                                        2^{(n-1)}-1.
                                                                         2^{(n-1)}-1;
         USAT
               0 \le x \le 2^n - 1
                                        0,
                                                                 0;
                                        2n-1,
                                                                    2n-1;
                   APSR
                                Q
                        Q
```

Q 0, MSR, Q MRS. 11.6.1.3 Ограничения SP PC. 11.6.1.4 Флаги Q. Q 1 11.6.1.5 Примеры SSAT R7, #16, R7, LSL #4 **R7** 4 16-**R**7 USATNE R0, #7, R5 R5 R0/

# 11.7 Команды работы с битовыми полями

59 ,

Таблица 59 – Инструкции упаковки и распаковки данных

| Мнемокод команд | Краткое описание |
|-----------------|------------------|
| BFC             |                  |
| BFI             |                  |
| SBFX            | ,                |
|                 |                  |
| SXTB            |                  |
| SXTH            |                  |
| UBFX            | ,                |
|                 |                  |
| UXTB            |                  |
| UXTH            |                  |

#### 11.7.1 BFC и BFI

Синтаксис BFC{cond} Rd, #lsb, #width BFI{cond} Rd, Rn, #lsb, #width cond -Rd -Rm -Isb lsb -0 31. width -1 32-lsb. Описание **BFC** Rd, width Rd lsb. **BFI** width Rn, Rd, 0, width lsb. Rd Ограничения SP PC. Флаги Примеры 12-8-19-BFC R4, #8, #12 R4. 8-19-BFI R9, R2, #8, #12 ; 12-R9. 12-0-11-R2.

#### 11.7.2 SBFX и UBFX

Синтаксис SBFX{cond} Rd, Rn, #lsb, #width UBFX{cond} Rd, Rn, #lsb, #width : cond -Rd -Rm lsb lsb 0 31. 1 width -32-lsb. Описание SBFX 32-**UBFX** 32-Ограничения SP PC. Флаги Примеры 4 SBFX R0, R1, #20, #4; ( 20 23) R1, R0UBFX R8, R11, #9, #10 (9 10 18) R11, R8.

#### 11.7.3 SXT и UXT

```
Синтаксис
      SXTextend{cond} {Rd,} Rm {, ROR #n}
      UXTextend{cond} {Rd}, Rm {, ROR #n}
        extend
   - B-
                        8-
                                        32-
   - H-
                        16-
                                         32-
cond -
Rd -
Rm -
ROR #n -
   - ROR #8 -
                         Rm
     ROR #16 -
                          Rm
                                                            16
      ROR #24 -
                          Rm
                                                            24
Описание
      SXTB
                                                                    Rm
                                                                              32-
                                                        [7:0],
                                                                  [31:8],
                                                        [7]
             Rd.
        UXTB
                                                                    Rm
                                                                              32-
                                                        [7:0],
                                                     [31:8],
   Rd.
        SXTH
                                                                    Rm
                                                        [15:0],
                                                                              32-
                                                      [15]
                                                                 [31:16],
              Rd.
        UXTH
                                                                    Rm
                                                        [15:0],
                                                                               32-
                                                     [31:16],
   Rd.
Ограничения
                                 SP
                                                    PC.
Флаги
Примеры
SXTH R4, R6, ROR #16;
                               R6
                                           16
                                                      32-
                                                            R4.
                                           R10,
                                                              32-
UXTB R3, R10
```

11.8 Инструкции передачи управления

Таблица 60 – Инструкции передачи управления

R3.

| Мнемокод команды | Краткое описание |
|------------------|------------------|
| В                |                  |
| BL               |                  |
| BLX              |                  |
| BX               |                  |
| CBNZ             |                  |
| CBZ              |                  |
| IT               |                  |
| TBB              | , -              |
| TBH              | ,                |

## 11.8.1 B, BL, BX и BLX

```
11.8.1.1 Синтаксис
      B{cond} label
      BL{cond} label
      BX{cond} Rm
      BLX{cond} Rm
В
BL -
BX -
BLX -
cond -
label -
                                            PC".
LDR,
Rm -
          [0]
                                                    1,
                                                                          [0].
    11.8.1.2 Описание
                                                 Rm.
                 BLX
            BL
                                                                            LR
    (R14);
                                       (usage fault)
            BX
                 BLX
                                                                bit[0]
                                                                              Rm
         0.
                  B cond label -
                   IT-
                                     IT-
                                                              "IT".
     (
               61)
```

Таблица 61 – Диапазон адресуемых переходов для команд ветвления

| Инструкция           |     | Диапазон адресации |  |  |
|----------------------|-----|--------------------|--|--|
| B label              | -16 | +16                |  |  |
| B cond label ( IT- ) | -1  | +1                 |  |  |
| B cond label ( IT-   | -16 | +16                |  |  |
| BL{cond} label       | -16 | +16                |  |  |
| BX{cond} Rm          |     | ,                  |  |  |
| BLX{cond} Rm         |     | ,                  |  |  |

.W

#### 11.8.1.3 Ограничения **BLX** PC; BX1, BLX, [0] Rm , [0]; IT-• B cond -IT-IT-11.8.1.4 Флаги 11.8.1.5 Примеры B loopA loopA BLE ng; ng |+/- 16 B.W target target, BEQ target target BEQ.W target **|+/-** 1 target BL funC ) funC, ( LR BX LR ; BXNE R0 R0R0. BLX R0 )

#### 11.8.2 CBZ и CBNZ

Синтаксис CBZ Rn, label CBNZ Rn, label Rn label -Описание CBZ **CBNZ** CBZ Rn, label CMP Rn, #0 BEQ label CBNZ Rn, label CMP Rn, #0 BNE label Ограничения R0 Rn R7; 130 IT- . Флаги Примеры CBZ R5, target; R5 = 0CBNZ R0, target R0 != 0.

#### 11.8.3 IT

```
11.8.3.1 Синтаксис
  IT{x{y{z}}} cond
                                                   IT-
 \mathbf{X}
                                                    IT-
 y
                                                      IT-
 Z
 cond
                                                IT-
                                                                  IT-
T - Then.
                                             cond
E - Else.
                                             cond
                                     IT-
                                                                     AL (
                                                       cond
                                IT-
).
                                T,
      x, y z
 11.8.3.2 Описание
     IT
  IT,
                 IT-
                      IT-
                         {cond}.
                 IT,
     BKPT
                  IT-
                                                                              IT
                          IT- ,
                             PSR
             LR.
                   IT-
                                               IT-
                        PC.
 11.8.3.3 Ограничения
                                             IT-
  IT, CBZ CBNZ, CPSI D CPSI E.
                                                            IT-
                                                                       PC,
                                             IT-
            IT-
```

```
- ADD PC, PC, Rm;
- MOV PC, Rm;
- B, BL, BX, BLX;
                   LDM, LDR
                                  POP,
                                                                     PC;
- TBB and TBH.
                                                         IT-
                                                                          IT-
                                         B cond,
                B cond
                                                                  IT-
               IT-
                          IT-
                                                                           IT-
                                                   IT-
  11.8.3.4
           Флаги
  11.8.3.5 Примеры
   ITTE NE
   ANDNE R0, R0, R1 ; ANDNE
   ADDSNE R2, R2, #1 ; ADDSNE
   MOVEQ R2, R3
   CMP R0, #9
                                        R0(0
                                                   15)
                                                            ASCII
                                            ('0'-'9', 'A'-'F')
   ITE GT
                                                  0xA \rightarrow
                                                              'A'
   ADDGT R1, R0, \#55; [R0 > 9]
   ADDLE R1, R0, #48; [R0 <= 9]
                                                   0x0 ->
                                                              '0'
   IT GT
                        ; IT-
   ADDGT R1, R1, #1
                                             R1
   ITTEE EQ
   MOVEQ R0, R1
   ADDEQ R2, R2, #10
   ANDNE R3, R3, #1
   BNE.W dloop
   IT NE
   ADD R0, R0, R1
                                                                       IT-
```

#### 11.8.4 ТВВ и ТВН

```
11.8.4.1 Синтаксис
     TBB [Rn, Rm]
     TBH [Rn, Rm, LSL #1]
                                                                          Rn
Rn
                     TBB
                             TBH.
Rm -
                                         LSL #1,
    11.8.4.2 Описание
                    PC
               (
                                                          TBH).
                           TBB)
       Rn
                                                        Rm -
            TBB
           TB
                TBB
                        TBH.
    11.8.4.3 Ограничения
                    Rn
                                         SP;
                                          SP
                    Rm
                                              PC;
                                      TBH
                               TBB
                                                  IT-
```

#### 11.8.4.4 Флаги

```
11.8.4.5 Примеры
```

```
ADR.W R0, BranchTable_Byte
 TBB [R0, R1]
                    ; R1 -
                                 , R0 -
Case1
                   R1 = 0
Case2
                   R1 = 1
Case3
                   R1 = 2
BranchTable_Byte
 DCB<sub>0</sub>
                                           Case1
 DCB ((Case2-Case1)/2)
                                           Case2
 DCB ((Case3-Case1)/2)
                                          Case3
 TBH [PC, R1, LSL #1]
                           ; R1 -
                                                            TBH
BranchTable_H
 DCI ((CaseA - BranchTable_H)/2);
                                                CaseA
 DCI ((CaseB - BranchTable_H)/2);
                                                CaseB
 DCI ((CaseC - BranchTable_H)/2);
                                                CaseC
CaseA
          CaseA
 ;
CaseB
          CaseB
CaseC
          CaseC
```

# 11.9 Прочие инструкции

Cortex-M3,

Таблица 62 – Прочие инструкции

| Мнемокод | Краткое описание |
|----------|------------------|
| ВКРТ     |                  |
| CPSID    | ,                |
| CPSIE    | ,                |
| DMB      |                  |
| DSB      |                  |
| ISB      |                  |
| MRS      |                  |
| MSR      |                  |
| NOP      |                  |
| SEV      |                  |
| SVC      |                  |
| WFE      |                  |
| WFI      |                  |

## 11.9.1 CPS

```
Синтаксис
          CPSeffect iflags
    effect -
          - IE -
                                             0;
          - ID -
                                                1.
    iflags -
          - i -
                                               PRIMASK;
          - f-
                                               FAULTMASK.
    Описание
             CPS
                                                                     PRIMASK
                                                            Exception mask".
FAULTMASK.
    Ограничения
               CPS
               CPS
                           IT-
    Флаги
    Примеры
          CPSID i;
          CPSID f;
          CPSIE i;
          CPSIE f;
```

## 11.9.2 DMB

Синтаксис

DMB{cond}

cond - ,

Описание

DMB

DMB,

DMB

Флаги

Примеры

DMB ;

## 11.9.3 DSB

Синтаксис

DSB{cond}

cond -

Описание

DSB

DSB, DSB

Флаги

Примеры

DSB ; Data Synchronization Barrier. 11.9.4 ISB

•

Синтаксис

ISB{cond}

:

cond - , . " ".

Описание

ISB

, isb,

,

Флаги

•

Примеры

ISB ;

#### 11.9.5 MRS

Синтаксис MRS{cond} Rd, spec\_reg cond -Rd spec\_reg -: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI, BASEPRI\_MAX, FAULTMASK CONTROL. Описание MRS MSR PSR, Q. PSR. MSR. MRS, BASEPRI MAX MRS BASEPRI. MSR. Ограничения Rd SP PC. Флаги Примеры MRS R0, PRIMASK ; PRIMASK R0.

#### 11.9.6 MSR

```
Синтаксис
         MSR{cond} spec_reg, Rn
         cond -
         Rn -
         spec_reg -
                                          : APSR, IPSR, EPSR, IEPSR, IAPSR,
     EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK
     CONTROL.
    Описание
                                          MSR
      APSR ( . "
                                                     APSR").
                                  EPSR
                             BASEPRI_MAX
BASEPRI
    • Rn
                                    BASEPRI
                                                 0:
    • Rn
                                            BASEPRI.
                              MRS.
    Ограничения
                                   Rn
                                                      SP
                                                            PC.
    Флаги
    Примеры
         MSR CONTROL, R1;
                                                  R1
                                                            CONTROL
```

#### 11.9.8 SEV

•

#### Синтаксис

SEV{cond}

: cond -

#### Описание

SEV

1.

#### Флаги

.

# Примеры

SEV ;

#### 11.9.9 SVC

Синтаксис

SVC{cond} #imm

cond - , . " ".
imm - , 0 255 (8).

Описание

SVC SVC. imm

Флаги

Примеры

SVC 0x32 ; ; ( SVC ; PC

# 11.9.10 WFE Синтаксис WFE{cond} cond -Описание 0, WFE **SEVONPEND** SCR; SEV) ( 0, 1, WFE Флаги Примеры

WFE

#### 11.9.11 WFI

#### Синтаксис

 $WFI\{cond\}$ 

cond -

#### Описание

WFI

- •
- •

Флаги

# Примеры

WFI

# 12 Системный таймер SysTick

24- , SysTick, , LOAD , .

# 12.1 Описание регистров системного таймера SysTick

Таблица 63 – Описание регистров системного таймера SysTick

| Адрес      | Название | Тип | Доступ | Значение после<br>сброса  | Описание      |
|------------|----------|-----|--------|---------------------------|---------------|
| 0xE000E010 | SysTick  |     |        |                           |               |
|            |          |     |        |                           | SYSTICK       |
| 0xE000E010 | CTRL     | RW  |        | 0x00000004                | SysTick->CTRL |
| 0xE000E014 | LOAD     | RW  |        | 0x00000000                | SysTick->LOAD |
| 0xE000E018 | VAL      | RW  |        | 0x00000000                | SysTick->VAL  |
| 0xE000E01C | CALIB    | RO  |        | 0x00002904 <sup>(1)</sup> | SysTick->CAL  |

1)

### 12.1.1 SysTick->CTRL

**CTRL** 

:

# Таблица 64 – Регистр контроля и статуса CTRL

| Номер  | 3117 | 16        | 153 | 2         | 1       | 0             |
|--------|------|-----------|-----|-----------|---------|---------------|
| Доступ |      |           |     |           |         |               |
| Сброс  |      |           |     |           |         |               |
|        | -    | COUNTFLAG | -   | CLKSOURCE | TICKINT | <b>ENABLE</b> |

COUNTFLAG

1,

**CLKSOURCE** 

:

0 - LSI

1 - HCLK

**TCKINT** 

:

0 -

÷

1 -

COUNTFLAG,

**ENABLE** 

.

0 -

1 -

**ENABLE** 

RELOAD

LOAD

T A G FEGURE

Λ

COUNTFLAG

**TCKINT** 

RELOAD

# 12.1.2 SysTick->LOAD

LOAD , VAL.

# Таблица 65 – Регистр перегружаемого значения LOAD

| Номер  | 3124 | 230    |
|--------|------|--------|
| Доступ |      |        |
| Сброс  |      |        |
|        | -    | RELOAD |

| RELOAD         |              |                                   |   |
|----------------|--------------|-----------------------------------|---|
| ,              | VAL,         |                                   |   |
| ·<br>          | RELOAD       |                                   |   |
| RELOAD         |              | 0x00000001-0x00FFFFF.             | 0 |
| ,<br>COUNTFLAG | ,            | 1 0.                              |   |
| RE             | LOAD         | :                                 |   |
| • 100          | RELOAD, N-1. | N<br>,<br>RELOAD, 99;<br>N<br>400 |   |
|                | RELOAD       | 400                               |   |

#### 12.1.3 SysTick->VAL

VAL

Таблица 66 – Регистр текущего значения таймера VAL

| Номер  | 3124 | 230     |
|--------|------|---------|
| Доступ |      |         |
| Сброс  |      |         |
|        | -    | CURRENT |

**CURRENT** 

COUNTFLAG

CTRL.

#### 12.1.4 SysTick->CAL

CALIB

Таблица 67 – Регистр калибровочного значения таймера CAL

| Номер  | 31    | 30   | 2924 | 230   |
|--------|-------|------|------|-------|
| Доступ |       |      |      |       |
| Сброс  |       |      |      |       |
|        | NOREF | SKEW | -    | TENMS |

NOREF

SKEW

**TENMS** 

0x0002904.

0x0002904 (10500), 1 10.5 (84/8=10.5 ).

# 12.2 Советы и особенности при применении системного таймера

# 13 Модуль защиты памяти MPU

|               |              |            | (N          | 1PU).      |                  |        |
|---------------|--------------|------------|-------------|------------|------------------|--------|
| MPU<br>•<br>• | (            | )          | ,           | ;          | ,                |        |
| •             |              | , 0-7<br>, | ,<br>,<br>7 | . Cortex-M | 3 MPU            | :      |
|               | ,<br>Cortex- | 7.<br>M3   |             | , . ,      | default          | ,      |
|               |              |            | OS.         |            | MPU,             |        |
| MPU           | ,            | OS         | OS.         |            | MPU<br>OS        |        |
|               | MPU          |            |             | , .        | и                |        |
|               | 68<br>, sha  | reable     | ,           |            | lfaan arnufyyaan | номату |

| Тип памяти | Атрибут<br>shareable | Другие<br>атрибуты | Описание |
|------------|----------------------|--------------------|----------|
|            |                      | _                  |          |
|            | _                    | _                  |          |
|            |                      | -                  |          |
|            |                      | -                  |          |
|            |                      |                    |          |

# 13.1 Описание регистров МРИ

MPU

Таблица 69 – Обзор регистров МРИ

|            |             |     |        | таолица о             | osop pernerpob ivii e |
|------------|-------------|-----|--------|-----------------------|-----------------------|
| Адрес      | Обозначение | Тип | Доступ | Значение после сброса | Описание              |
| 0xE000ED90 | MPU         |     |        |                       |                       |
|            |             |     |        |                       | MPU                   |
| 0x000      | TYPE        | RO  |        | 0x00000800            | MPU->TYPE             |
| 0x004      | CTRL        | RW  |        | 0x00000000            | MPU->CTRL             |
| 0x008      | RNR         | RW  |        | 0x00000000            | MPU->RNR              |
| 0x00C      | RBAR        | RW  |        | 0x00000000            | MPU->RBAR             |
| 0x010      | RASR        | RW  |        | 0x00000000            | MPU->RASR             |
| 0x014      | RBAR_A1     | RW  |        | 0x00000000            | RBAR                  |
| 0x018      | RASR_A1     | RW  |        | 0x00000000            | RASR                  |
| 0x01C      | RBAR_A2     | RW  |        | 0x00000000            | RBAR                  |
| 0x020      | RASR_A2     | RW  |        | 0x00000000            | RASR                  |
| 0x24       | RBAR_A3     | RW  |        | 0x00000000            | RBAR                  |
| 0x28       | RASR_A3     | RW  |        | 0x00000000            | RASR                  |

#### 13.1.1 MPU->TYPE

TYPE , MPU,

Таблица 70 – Регистр ТҮРЕ

Номер Доступ Сброс 31...24 23...16

15...8

7...1

0

| - | IREGION | DREGION | - | SEPARATE |
|---|---------|---------|---|----------|
|   |         |         |   |          |

#### **IREGION**

MPU

0x00.

MPU

DREGION.

#### **DREGION**

MPU

0x08 - MPU

SEPARATE

.

.

0 -

#### 13.1.2 MPU->CTRL

CTRL:

MPU;

default

MPU,

(NMI), FAULTMASK

#### Таблица 71 – Регистр CTRL

| Номер  | 314 | 3          | 2 | 1        | 0      |
|--------|-----|------------|---|----------|--------|
| Доступ |     |            |   |          |        |
| Сброс  |     |            |   |          |        |
|        | -   | PRIVDEFENA |   | HFNMIENA | ENABLE |

#### **PRIVDEFENA**

default

0 -MPU default

MPU 1 default

-1.

default

MPU

#### **HFNMIENA**

**MPU** , NMI,

**FAULTMASK** 

MPU

0 - MPU , NMI, FAULTMASK

**ENABLE**;

1 - MPU , NMI, FAULTMASK

**MPU** 

#### **ENABLE**

MPU:

0 - MPU

1 - MPU

ENABLE PRIVDEFENA

, default

default

XN ENABLE. **ENABLE PRIVDEFENA PRIVDEFENA ENABLE** default MPU . default **MPU** PRIVDEFENA. **HFNMIENA** 1, MPU -2. -1 NMI, **FAULTMASK HFNMIENA** 13.1.3 MPU->RNR RNR RBAR RASR. Таблица 72 – Регистр номера региона RNR 7...0 Номер 31...8 Доступ Сброс REGION REGION **MPU** RBAR RASR. 8 0 **MPU** 7.

RBAR RASR. RBAR

VALID. REGION.

MPU->RBAR

RBAR MPU , RNR,

RNR. RBAR VALID

RNR.

#### Таблица 73 – Регистр базового адреса региона RBAR

| Номер  | 31N  | N-16 | 5     | 4 | 30     |
|--------|------|------|-------|---|--------|
| Доступ |      |      |       |   |        |
| Сброс  |      |      |       |   |        |
|        | ADDR | -    | VALID |   | REGION |

```
ADDR
                                       N
                                     ADDR".
    VALID
                           MPU:
    0 - RNR
                                                     RNR;
                              REGION.
    1 -
                         RNR
                                             REGION;
                                                      REGION.
    REGION
        MPU
                                                      VALID);
           RNR.
    Поле ADDR
        ADDR
                 [31:N]
                                  RBAR.
                                                                      SIZE
       RASR,
         N = Log 2 (
                                    ),
                                                 RASR,
                                                                      ADDR
0x00000000.
                                                     , 64
     64 , , 0x00010000
                                0x00020000.
```

#### 13.1.4 MPU->RASR

RASR MPU , RNR,

RASR :

- ;

.

#### Таблица 74 – Назначение бит регистра RASR.

| Номер  | 31 | 30 | 29 | 28 | 27 | 26 | 24 | 23 | 22 | 21 | 19  | 18 | 17 | 16 | 15  | 8   | 7 | 6 | 5 | 1    | 0      |
|--------|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|-----|-----|---|---|---|------|--------|
| Доступ |    |    |    |    |    |    |    |    |    |    |     |    |    |    |     |     |   |   |   |      |        |
| Сброс  |    |    |    |    |    |    |    |    |    |    |     |    |    |    |     |     |   |   |   |      |        |
|        |    |    | XN |    | -  | !  | AP |    |    |    | TEX | S  | C  | В  | ממט | SKD | - | • |   | SIZE | ENABLE |
|        |    |    |    |    |    |    |    |    |    |    |     |    |    |    |     |     |   |   |   |      | E      |

XN

0 - ;

1 - .

ΑP

, . 78 – AP.

TEX, C, B

, . 76 –

S

, . 75 – SIZE.

SRD

. :

0 - ;

1 - .

. . .

, SRD 0x00.

SIZE

MPU . 3(b00010),

. "SIZE".

**ENABLE** 

MPU".

Значения поля SIZE

SIZE MPU , RNR
:

(Region size in bytes) = 2 (SIZE+1)

32 , SIZE, 4. 75 SIZE, N RBAR.

# Таблица 75 – Пример значений поля SIZE

| Значение SIZE | Размер региона | Значение <b>N</b> <sup>(1)</sup> | Комментарий |
|---------------|----------------|----------------------------------|-------------|
| b00100(4)     | 32             | 5                                |             |
| b01001(9)     | 1              | 10                               | -           |
| b10011(19)    | 1              | 20                               | -           |
| b11101(29)    | 1              | 30                               | -           |
| b11111 (31)   | 4              | b01100                           |             |

1). RBAR, . " MPU ".

## 13.1.5 Атрибуты разрешения доступа МРИ

TEX, C, B, S,

AP XN

**RASR** 

**MPU** 

Таблица 76 – Кодирование бит разрешения доступа TEX, C, B, S

| TEX   | С | В                | S                | Тип памяти | Возможность общего доступа | Другие атрибуты |
|-------|---|------------------|------------------|------------|----------------------------|-----------------|
|       | 0 | 0                | x <sup>(1)</sup> |            |                            |                 |
|       |   | 1                | x <sup>(1)</sup> |            |                            |                 |
|       |   | _                | 0                |            |                            | ,               |
| b000  | 1 | 0                | 1                |            |                            | ·               |
|       | 1 |                  | 0                |            |                            | ,               |
|       |   | 1                | 1                |            |                            |                 |
|       |   | 0                | 0                |            |                            |                 |
|       | 0 |                  | 1                |            |                            |                 |
| 1.001 |   | 1                | X <sup>(1)</sup> |            |                            | -               |
| b001  |   | 0                | X <sup>(1)</sup> |            | T                          | -               |
|       | 1 | 1                | 0                |            |                            | ,               |
|       |   | 1                | 1                |            |                            | ·               |
|       | 0 | 0                | x <sup>(1)</sup> |            |                            |                 |
| b010  |   | 1                | x <sup>(1)</sup> |            |                            | -               |
|       | 1 | x <sup>(1)</sup> | x <sup>(1)</sup> |            |                            | -               |
| b1BB  | A | Α                | 0                |            |                            |                 |
|       |   |                  | 1                |            |                            |                 |

<sup>1)</sup> MPU

77 4 **7**. TEX

Таблица 77 – Кодирование режима кэша атрибутом ТЕХ

| Значение AA или BB при TEX=1xx | Соответствующий режим кэша |
|--------------------------------|----------------------------|
| 00                             |                            |
| 01                             | ,                          |
| 10                             | ,                          |
| 11                             | ,                          |

78

AP,

( ).

| Таблина 78 - | - Кодирование | привилегий | лоступа в | з поле АР |
|--------------|---------------|------------|-----------|-----------|
| таолица /о   | ROGHDODAIINC  |            | доступа т |           |

| AP[2:0] | Привилегирован- | Непривилегирован- | Описание |
|---------|-----------------|-------------------|----------|
|         | ный доступ      | ный доступ        |          |
| 000     |                 |                   |          |
| 001     | RW              |                   |          |
| 010     | RW              | RO                |          |
| 011     | RW              | RW                |          |
| 100     |                 |                   |          |
| 101     | RO              |                   |          |
| 110     | RO              | RO                | ,        |
| 111     | RO              | RO                | ,        |

#### 13.1.6 Несоответствие МР

MPU, , . " ". MMFSR . " MMFSR".

#### 13.1.7 Обновление MPU региона

MPU RNR, RBAR RASR.

RBAR RASR, 4 , STM.

#### 13.1.7.1 Обновление MPU региона через отдельные регистры

; R1 = ; R2 = / ; R3 = ; R4 = LDR R0,=MPU\_RNR; 0xE000ED98, STR R1, [R0, #0x0] ; STR R4, [R0, #0x4] ;

STRH R3, [R0, #0xA] ; MPU,

; R1 = ; R2 = /; R3 = ; R4 =

STRH R2, [R0, #0x8];

LDR R0,=MPU\_RNR; 0xE000ED98, MPU

MPU

```
STR R1, [R0, \#0x0];
           BIC R2, R2, #1;
           STRH R2, [R0, #0x8];
           STR R4, [R0, #0x4];
           STRH R3, [R0, \#0xA];
           ORR R2, #1;
           STRH R2, [R0, #0x8];
                                               barrier
                            MPU
                                                                 MPU;
                       MPU,
                       MPU.
                         barrier
                                                                        MPU
                                                               barrier
                                            barrier
MPU,
                                                    PPB,
                                                                             DSR
                                                                                  ISB.
                                                   MPU,
           DSB
                                                              MPU
            ISB
                                                 (branch)
                                                                                  (call).
                                                                                (return),
                   ISB
         13.1.7.2 Обновление MPU региона через множественную запись регистров
           ; R1 =
           ; R2 =
           LDR R0, =MPU_RNR; 0xE000ED98,
                                                                   MPU
           STR R1, [R0, #0x0];
           STR R2, [R0, #0x4];
           STR R3, [R0, #0x8];
                                   STM
           ; R1 =
           ; R2 =
           ; R3 =
           LDR R0, =MPU_RNR; 0xE000ED98,
                                                                   MPU
           STM R0, {R1-R3};
           RBAR
                                                                VALID,
```

```
"MPU->RBAR".
           ; R1 =
           ; R2 =
           LDR R0, =MPU_RBAR; 0xE000ED9C,
                                                                         MPU
           STR R1, [R0, #0x0];
                                                             1
                                   VALID,
           STR R2, [R0, #0x4];
                                     STM
           ; R1 =
           ; R2 =
                                                                         MPU
           LDR R0,=MPU_RBAR; 0xE000ED9C,
           STM R0, {R1-R2};
                                                                          VALID,
          13.1.7.3 Подрегионы
                             256
                                        SRD
                                                       RASR
       "MPU->RASR".
                                                   SRD
                                    MPU
                        32, 64
                                  128
                        SRD
                                                           MPU
                                     0x00,
         13.1.7.4 Пример применения SRD
                                                                                    128
                 512
128
                    SRD
                                                          b00000011
                                                      Region 2, with
                                                                   Offset from
                                                       subregions
                                                                   base address
                                                                   512KB
                                                                   448KB
                                                                   384KB
                                                                   320KB
                                                                   256KB
                                        Region 1
                                                                   192KB
                                                                   128KB
                                                    Disabled subregion
                                                                    64KB
                                                    Disabled subregion
               Base address of both regions
                               Рисунок 27. Применение SRD
```

#### 13.2 Советы и особенности применения МРU

MPU:

RASR,

| • RASR                  | ,                                                             |
|-------------------------|---------------------------------------------------------------|
|                         | MPU.                                                          |
| MPU ,                   |                                                               |
|                         | ·                                                             |
| 13.2.1 Конфигурация MPU | для микроконтроллера                                          |
| ,                       |                                                               |
| MPU                     | :                                                             |
| Таблица 7               | 70 <sub>—</sub> Атпибуты пегионор памати пла миклоконтполлера |

| Регион памяти | TEX  | C | В | S | Типа памяти и атрибут |
|---------------|------|---|---|---|-----------------------|
| -             | b000 | 1 | 0 | 0 | , ,                   |
| SRAM          | b000 | 1 | 0 | 1 | , ,                   |
| SRAM          | b000 | 1 | 1 | 1 | , ,                   |
|               |      |   |   |   |                       |
|               | b000 | 0 | 1 | 1 | ,                     |

MPU

DMA

# 14 Сигналы тактовой частоты MDR\_RST\_CLK

RST\_CLK.

HSI
, RST\_CLK,
.

PER\_CLOCK. (UART, CAN, USB, )
, (UART\_CLOCK, CAN\_CLOCK, USB\_CLOCK, TIM\_CLOCK)
.

#### CPU\_CLOCK USB\_CLOCK.

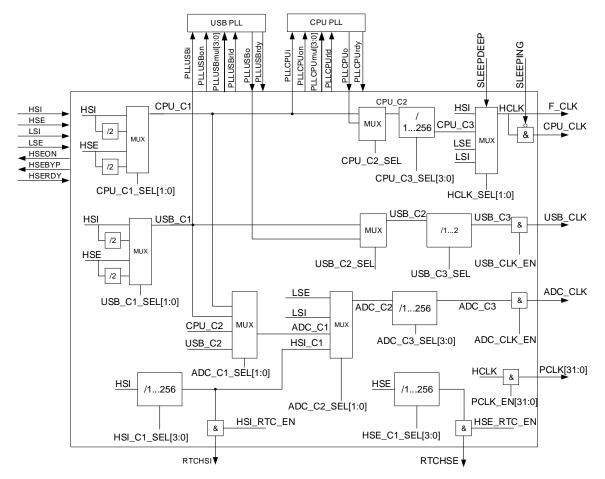



Рисунок 28. Структурная блок – схема формирования тактовой частоты

#### Встроенный RC генератор HSI

HSI  $f_{O\_HSI}$  8  $U_{CC}$ 

**HSIRDY** BKP\_REG\_0F. HSI. **HSION** HSI BKP REG 0F. **HSITRIM** BKP\_REG\_0F. Встроенный RC генератор LSI LSI 40 fo LSI Ucc BKP\_REG\_0F. LSIRDY LSI tpor. LSI **LSION** BKP REG 0F. Внешний генератор HSE **HSE** 2..16 Ucc **HSEON** HS\_CONTROL. **HSERDY** CLOCK STATUS. OSC\_IN HSE. HSEBYP, OSC OUT Внешний генератор LSE **LSE** 32  $BDU_{CC}$ **LSEON** BKP\_REG\_0F. **LSERDY** BKP\_REG\_0F. LSEBYP, OSC\_IN32 OSC OUT32 LSE. LSE **BDU**<sub>CC</sub> BKP\_REG\_0F **LSE** U<sub>CC</sub>. Встроенный блок умножения системной тактовой частоты 16, 2 PLLCPUMUL[3:0] PLL\_CONTROL. 2...16 100 PLLCPURDY CLOCK\_STATUS. **PLLCPUON** PLL\_CONTROL. Встроенный блок умножения USB тактовой частоты 2 16, PLLUSBMUL[3:0] PLL CONTROL. 2...16 48 CLOCK\_STATUS. **PLLUSBRDY** PLLUSBON PLL\_CONTROL. USB

# 14.1 Описание регистров блока контроллера тактовой частоты

Таблица 80 – Описание регистров блока контроллера тактовой частоты

| Базовый Адрес | Название      | Описание                     |
|---------------|---------------|------------------------------|
| 0x4002_0000   | MDR_RST_CLK   |                              |
| Смещение      |               |                              |
| 0x00          | CLOCK_STATUS  | MDR_RST_CLK->CLOCK_STATUS    |
| 0x04          | PLL_CONTROL   | MDR_RST_CLK->PLL_CONTROL     |
| 0x08          | HS_CONTROL    | MDR_RST_CLK->HS_CONTROL      |
| 0x0C          | CPU_CLOCK     | MDR_RST_CLK->CPU_CLOCK       |
| 0x10          | USB_CLOCK     | MDR_RST_CLK->USB_CLOCK USB   |
| 0x14          | ADC_MCO_CLOCK | MDR_RST_CLK->ADC_MCO_CLOCK   |
| 0x18          | RTC_CLOCK     | MDR_RST_CLK->RTC_CLOCK  RTC  |
| 0x1C          | PER_CLOCK     | MDR_RST_CLK->PER_CLOCK       |
| 0x20          | CAN_CLOCK     | MDR_RST_CLK->CAN_CLOCK CAN   |
| 0x24          | TIM_CLOCK     | MDR_RST_CLK->TIM_CLOCK TIMER |
| 0x28          | UART_CLOCK    | MDR_RST_CLK->UART_CLOCK UART |
| 0x2C          | SSP_CLOCK     | MDR_RST_CLK->SSP_CLOCK SSP   |

#### 14.1.1 MDR\_RST\_CLK->CLOCK\_STATUS

Таблица 81 – Регистр CLOCK\_STATUS

| Номер  | 313 | 2          | 1                 | 0                 |
|--------|-----|------------|-------------------|-------------------|
| Доступ | U   | RO         | RO                | RO                |
| Сброс  | 0   | 0          | 0                 | 0                 |
|        | -   | HSE<br>RDY | PLL<br>CPU<br>RDY | PLL<br>USB<br>RDY |

Таблица 82 – Описание бит регистра CLOCK\_STATUS

| №    | •        |                    | ционального имени бита, краткое описание |
|------|----------|--------------------|------------------------------------------|
| бита | имя бита | назначения и прини | імаемых значений                         |
| 313  | -        |                    |                                          |
| 2    | HSE      |                    | HSE:                                     |
|      | RDY      | 0 –                | ,                                        |
|      |          | 1 –                |                                          |
| 1    | PLL      |                    | CPU PLL:                                 |
|      | CPU      | 0 - PLL            | •                                        |
|      | RDY      | 1 <b>–</b> PLL     |                                          |
| 0    | PLL      |                    | USB PLL:                                 |
|      | USB      | 0 - PLL            | •                                        |
|      | RDY      | 1 – PLL            |                                          |

#### 14.1.2 MDR\_RST\_CLK->PLL\_CONTROL

Таблица 83 – Регистр PLL\_CONTROL

| Номер  | 3112 | 118      | 74       | 3   | 2   | 1   | 0   |
|--------|------|----------|----------|-----|-----|-----|-----|
| Доступ | U    | R/W      | R/W      | R/W | R/W | R/W | R/W |
| Сброс  | 0    | 0        | 0        | 0   | 0   | 0   | 0   |
|        |      | PLL      | PLL      | PLL | PLL | PLL | PLL |
|        | -    | CPU      | USB      | CPU | CPU | USB | USB |
|        |      | MUL[3:0] | MUL[3:0] | RLD | ON  | RLD | ON  |

# Таблица 84 – Описание бит регистра PLL\_CONTROL

| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |
|------|----------------|----------------------------------------------------------|
| бита | имя бита       | назначения и принимаемых значений                        |
| 3112 | -              |                                                          |
| 118  | PLL            | CPU PLL:                                                 |
|      | CPU            | PLLCPUo = PLLCPUi x (PLLCPUMUL+1)                        |
|      | MUL[3:0]       |                                                          |
| 74   | PLL            | USB PLL:                                                 |
|      | USB            | PLLUSBo = PLLUSBi x (PLLUSBMUL+1)                        |
|      | MUL[3:0]       |                                                          |
| 3    | PLL            | PLL.                                                     |
|      | CPU            |                                                          |
|      | RLD            | 1                                                        |
| 2    | PLL            | PLL:                                                     |
|      | CPU            | 0-PLL ;                                                  |
|      | ON             | 1 – PLL                                                  |
| 1    | PLL            | PLL.                                                     |
|      | USB            |                                                          |
|      | RLD            | 1                                                        |
| 0    | PLL            | PLL:                                                     |
|      | USB            | 0-PLL ;                                                  |
|      | ON             | 1 – PLL                                                  |

#### 14.1.3 MDR\_RST\_CLK->HS\_CONTROL

Таблица 85 – Регистра HS\_CONTROL

| Номер  | 312 | 1   | 0   |
|--------|-----|-----|-----|
| Доступ | U   | R/W | R/W |
| Сброс  | 0   | 0   | 0   |
|        |     | HSE | HSE |
|        | -   | BYP | ON  |

Таблица 86 – Описание бит регистра HS\_CONTROL

| No   | •          | 7 1                                        |  |  |
|------|------------|--------------------------------------------|--|--|
| бита | имя бита   | описание назначения и принимаемых значений |  |  |
| 312  | -          |                                            |  |  |
| 1    | HSE<br>BYP | HSE : 0 - ; 1 -                            |  |  |
| 0    | HSE<br>ON  | HSE : 0 - ; 1 -                            |  |  |

#### 14.1.4 MDR\_RST\_CLK->CPU\_CLOCK

Таблица 87 – Регистр CPU\_CLOCK

| Номер  | 3110 | 98               | 74        | 3 | 2         | 10        |
|--------|------|------------------|-----------|---|-----------|-----------|
| Доступ | U    | R/W              | R/W       | U | R/W       | R/W       |
| Сброс  | 0    | 0                | 0         | 0 | 0         | 0         |
|        |      |                  |           |   |           |           |
|        |      | HCI K            | CPU       |   | CPU       | CPU       |
| •      | -    | HCLK<br>SEL[1:0] | CPU<br>C3 | - | CPU<br>C2 | CPU<br>C1 |

Таблица 88 - Описание бит регистра CPU\_CLOCK

|      |                | Таблица 88 – Описание бит регистра CPU_CLOCK             |
|------|----------------|----------------------------------------------------------|
| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |
| бита | имя бита       | назначения и принимаемых значений                        |
| 3110 | -              | -                                                        |
|      |                | HCLK:                                                    |
|      | HCLK           | 00 – HSI                                                 |
| 98   |                | 01 - CPU_C3                                              |
|      | SEL[1:0]       | 10 - LSE                                                 |
|      |                | 11 – LSI                                                 |
|      |                | CPU_C3:                                                  |
|      |                | $0xxx - CPU_C3 = CPU_C2$                                 |
|      | CPU            | $1000 - CPU_C3 = CPU_C2 / 2$                             |
| 74   | C3             | $1001 - CPU_C3 = CPU_C2 / 4$                             |
|      | SEL[3:0]       | $1010 - CPU_C3 = CPU_C2 / 8$                             |
|      |                | •••                                                      |
|      |                | 1111 - CPU_C3 = CPU_C2 / 256                             |
| 3    | -              |                                                          |
|      | CPU            | CPU_C2:                                                  |
| 2    | C2             | 0 – CPU_C1                                               |
| 2    | SEL            | 1 – PLLCPUo                                              |
|      | SLL            |                                                          |
|      |                | CPU_C1:                                                  |
|      | CPU            | 00 – HSI                                                 |
| 10   | C1             | 01 – HSI/2                                               |
|      | SEL[1:0]       | 10 – HSE                                                 |
|      |                | 11 – HSE/2                                               |

# 14.1.5 MDR\_RST\_CLK->USB\_CLOCK

Таблица 89 – Регистр USB\_CLOCK

| Номер  | 319 | 8    | 75 | 4    | 3 | 2    | 10   |
|--------|-----|------|----|------|---|------|------|
| Доступ | U   | R/W  | U  | R/W  | U | R/W  | R/W  |
| Сброс  | 0   | 0    | 0  | 0    | 0 | 0    | 0    |
|        |     | TICD |    | TIOD |   | TICD | TIOD |
| 1      |     | USB  |    | USB  |   | USB  | USB  |
|        | -   | CLK  | -  | C3   | - | C2   | C1   |

Таблица 90 – Описание бит регистра USB\_CLOCK

|      |                       | Таолица 90 – Описание оит регистра USB_CLOCK                |
|------|-----------------------|-------------------------------------------------------------|
| №    | Функциональное        | Расшифровка функционального имени бита, краткое             |
| бита | имя бита              | описание назначения и принимаемых значений                  |
| 319  | -                     |                                                             |
| 8    | USB                   | USB:                                                        |
|      | CLK                   | 0 – ;                                                       |
|      | EN                    | 1 –                                                         |
| 75   | 1                     |                                                             |
| 4    | USB                   | USB_C3:                                                     |
|      | C3                    | $0 - USB\_C3 = USB\_C2$                                     |
|      | SEL                   | $1 - USB _C3 = USB _C2 / 2$                                 |
| 3    | -                     |                                                             |
| 2    | USB<br>C2<br>SEL      | USB_C2:<br>0 - USB_C1<br>1 - PLLUSBo                        |
| 10   | USB<br>C1<br>SEL[1:0] | USB_C1:<br>00 - HSI<br>01 - HSI/2<br>10 - HSE<br>11 - HSE/2 |

#### 14.1.6 MDR\_RST\_CLK->ADC\_MCO\_CLOCK

Таблица 91 – Регистр ADC\_MCO\_CLOCK

| Номер  | 3114 | 13  | 12 | 118  | 76 | 54   | 32 | 10  |
|--------|------|-----|----|------|----|------|----|-----|
| Доступ | U    | R/W | U  | R/W  | U  | R/W  | U  | R/W |
| Сброс  | 0    | 0   | 0  | 0    | 0  | 0    | 0  | 0   |
|        |      | ADC |    | ADC  |    | ADC  |    | ADC |
|        |      |     |    | 1120 |    | 1120 |    |     |
|        | -    | CLK | -  | C3   | -  | C2   | -  | C1  |

Таблица 92 – Описание бит регистра ADC\_MCO\_CLOCK

| No       | Функциональное | Расшифровка функционального имени бита, краткое описание |
|----------|----------------|----------------------------------------------------------|
| <u> </u> | имя бита       | назначения и принимаемых значений                        |
|          | имя онта       | назначения и принимаемых значении                        |
| 3114     | -              | 1 D C CI II                                              |
| 13       | ADC            | ADC CLK:                                                 |
|          | CLK            | 0 – ;                                                    |
|          | EN             | 1 –                                                      |
| 12       | -              |                                                          |
| 118      |                | ADC_C3:                                                  |
|          |                | $0xxx - ADC_C3 = ADC_C2$                                 |
|          | ADC            | 1000 - ADC C3 = ADC C2 / 2                               |
|          | C3             | $1001 - ADC_C3 = ADC_C2 / 4$                             |
|          | SEL[3:0]       | $1010 - ADC_C3 = ADC_C2 / 8$                             |
|          | 522[5.0]       |                                                          |
|          |                | <br>1111 - ADC_C3 = ADC _C2 / 256                        |
| 76       | -              |                                                          |
| 54       |                | ADC_C1:                                                  |
|          | ADC            | 00 - LSE                                                 |
|          | C2             | 01 – LSI                                                 |
|          | SEL[1:0]       | 10 - ADC_C1                                              |
|          |                | 11 – HSI_C1                                              |
| 32       | -              | <del>-</del>                                             |
| 10       |                | ADC_C1:                                                  |
|          | ADC            | 00 - CPU_C1                                              |
|          | C1             | 01 – USB C1                                              |
|          | SEL[1:0]       | 10 - CPU_C2                                              |
|          |                | 11 – USB_C2                                              |
|          |                | 11 000_02                                                |

# 14.1.7 MDR\_RST\_CLK->RTC\_CLOCK

# Таблица 93 – Регистр RTC\_CLOCK

| Номер  | 3110 | 9   | 8   | 74                 | 30     |
|--------|------|-----|-----|--------------------|--------|
| Доступ | U    | R/W | R/W | R/W                | R/W    |
| Сброс  | 0    | 0   | 0   | 0                  | 0      |
|        |      | HSI | HSE |                    |        |
|        | -    | RTC | DTC | HSI_C1<br>SEL[1:0] | HSE_C1 |

#### Таблица 94 – Описание бит регистра RTC CLOCK

| NC-  | Φ        | паолица 94 – Описание онг регистра КТС_ССОСК             |
|------|----------|----------------------------------------------------------|
| №    | _        | Расшифровка функционального имени бита, краткое описание |
| бита | имя бита | назначения и принимаемых значений                        |
| 3110 | -        |                                                          |
| 9    | HSI      | HSI RTC:                                                 |
|      | RTC      | 0- ;                                                     |
|      | EN       | 1 –                                                      |
| 8    | HSE      | HSE RTC:                                                 |
|      | RTC      | 0- ;                                                     |
|      | EN       | 1 –                                                      |
| 74   | HSI_C1   | HSI_C1:                                                  |
|      | SEL[3:0] | $0xxx - RTCHSI = HSI \_C2$                               |
|      |          | $1000 - RTCHSI = HSI \_C2 / 2$                           |
|      |          | $1001 - RTCHSI = HSI \_C2 / 4$                           |
|      |          | $1010 - RTCHSI = HSI \_C2 / 8$                           |
|      |          |                                                          |
|      |          | 1111 - RTCHSI = HSI _C2 / 256                            |
| 30   |          | HSE_C1:                                                  |
|      |          | $0xxx - RTCHSE = HSE \_C2$                               |
|      | HCE C1   | $1000 - RTCHSE = HSE \_C2 / 2$                           |
|      | HSE_C1   | $1001 - RTCHSE = HSE \_C2 / 4$                           |
|      | SEL[3:0] | $1010 - RTCHSE = HSE \_C2 / 8$                           |
|      |          |                                                          |
|      |          | $1111 - RTCHSE = HSE \_C2 / 256$                         |

#### 14.1.8 MDR\_RST\_CLK->PER\_CLOCK

Таблица 95 – Регистр PER\_CLOCK

| Номер  | 315           | 4          | 30           |
|--------|---------------|------------|--------------|
| Доступ | R/W           | R/W        | R/W          |
| Сброс  | 0             | 1          | 0            |
|        | PCLK_EN[31:5] | PCLK_EN[4] | PCLK_EN[3:0] |

Таблица 96 – Описание бит регистра PER\_CLOCK

| №    | Функциональное   | Расшифровка функционального имени бита, краткое описание                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| бита | имя бита         | назначения и принимаемых значений                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 315  | PCLK<br>EN[31:5] | : 0 - ; 1  PCLK[5] - DMA  PCLK[6] - UART1  PCLK[7] - UART2  PCLK[8] - SPI1  PCLK[9] -  PCLK[10] - I2C1  PCLK[11] - POWER  PCLK[12] - WWDT  PCLK[13] - IWDT  PCLK[13] - IMER1  PCLK[15] - TIMER1  PCLK[16] - TIMER3  PCLK[17] - ADC  PCLK[18] - DAC  PCLK[19] - COMP  PCLK[20] - SPI2  PCLK[21] - PORTA  PCLK[22] - PORTB  PCLK[23] - PORTC  PCLK[24] - PORTD  PCLK[25] - PORTE  PCLK[26] -  PCLK[27] - BKP  PCLK[28] -  PCLK[29] - PORTF  PCLK[30] - EXT_BUS_CNTRL  PCLK[31] - |
| 4    | PCLK<br>EN[4]    | :<br>0 - ;<br>1<br>PCLK[4] - RST_CLK. 1                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30   | PCLK<br>EN[3:0]  | : 0- ; 1 PCLK[0] - CAN1 PCLK[1] - CAN2 PCLK[2] - USB PCLK[3] - EEPROM_CNTRL                                                                                                                                                                                                                                                                                                                                                                                                    |

#### 14.1.9 MDR\_RST\_CLK->CAN\_CLOCK

# Таблица 97 – Регистр CAN\_CLOCK

| Номер  | 3126 | 25          | 24          | 2316 | 158         | 70          |
|--------|------|-------------|-------------|------|-------------|-------------|
| Доступ | U    | R/W         | R/W         | U    | R/W         | R/W         |
| Сброс  | 0    | 0           | 0           | 0    | 0           | 0           |
|        |      |             |             |      |             |             |
|        |      | CAN2        | CAN1        |      | CAN2        | CAN1        |
|        | -    | CAN2<br>CLK | CAN1<br>CLK | -    | CAN2<br>BRG | CAN1<br>BRG |

## Таблица 98 - Описание бит регистра CAN\_CLOCK

|      | Δ              | Таолица 96 — Описание оит регистра CAN_CLOCK             |
|------|----------------|----------------------------------------------------------|
|      | Функциональное | Расшифровка функционального имени бита, краткое описание |
|      | имя бита       | назначения и принимаемых значений                        |
| 3126 | -              |                                                          |
| 25   | CAN2           | CAN2:                                                    |
|      | CLK            | 0 – ;                                                    |
|      | EN             | 1 –                                                      |
| 24   | CAN1           | CAN2:                                                    |
|      | CLK            | 0 – ;                                                    |
|      | EN             | 1 –                                                      |
| 2316 | -              |                                                          |
| 158  |                | CAN2                                                     |
|      |                |                                                          |
|      | CAN2           | $xxxxx000 - CAN2\_CLK == HCLK$                           |
|      | BRG            | $xxxxx001 - CAN2\_CLK == HCLK/2$                         |
|      | [7:0]          | $xxxxx010 - CAN2\_CLK == HCLK/4$                         |
|      |                |                                                          |
|      |                | $xxxxx111 - CAN2\_CLK == HCLK/128$                       |
| 70   |                | CAN1                                                     |
|      |                |                                                          |
|      | CAN1           | $xxxxx000 - CAN1_CLK == HCLK$                            |
|      | BRG            | $xxxxx001 - CAN1_CLK == HCLK/2$                          |
|      | [7:0]          | $xxxxx010 - CAN1_CLK == HCLK/4$                          |
|      |                |                                                          |
|      |                | $xxxxx111 - CAN1\_CLK == HCLK/128$                       |

#### 14.1.10 MDR\_RST\_CLK->TIM\_CLOCK

#### Таблица 99 – Регистр TIM\_CLOCK

| Номер  | 3127 | 26          | 25          | 24          | <b>23</b> 16 | 158         | 70          |
|--------|------|-------------|-------------|-------------|--------------|-------------|-------------|
| Доступ | U    | R/W         | R/W         | R/W         | R/W          | R/W         | R/W         |
| Сброс  | 0    | 0           | 0           | 0           | 0            | 0           | 0           |
|        |      |             |             |             |              |             |             |
| •      |      | TIM3        | TIM2        | TIM1        | TIM3         | TIM2        | TIM1        |
| •      | -    | TIM3<br>CLK | TIM2<br>CLK | TIM1<br>CLK | TIM3<br>BRG  | TIM2<br>BRG | TIM1<br>BRG |

Таблица 100 – Описание бит регистра TIM\_CLOCK

|                     |                | Таблица 100 – Описание бит регистра TIM_CLOCK   |
|---------------------|----------------|-------------------------------------------------|
| $N_{\underline{0}}$ | Функциональное | Расшифровка функционального имени бита, краткое |
| бита                | имя бита       | описание назначения и принимаемых значений      |
| 3127                | -              |                                                 |
| 26                  | TIM3           | TIM3:                                           |
|                     | CLK            | 0-;                                             |
|                     | EN             | 1 –                                             |
| 25                  | TIM2           | TIM2:                                           |
|                     | CLK            | 0-;                                             |
|                     | EN             | 1 –                                             |
| 24                  | TIM1           | TIM1:                                           |
|                     | CLK            | 0-;                                             |
|                     | EN             | 1 –                                             |
| 2316                | TIM3           | TIM3:                                           |
|                     | BRG            | $xxxxx000 - TIM3_CLK == HCLK$                   |
|                     | [7:0]          | $xxxxx001 - TIM3_CLK == HCLK/2$                 |
|                     |                | $xxxxx010 - TIM3_CLK == HCLK/4$                 |
|                     |                |                                                 |
|                     |                | $xxxxx111 - TIM3\_CLK == HCLK/128$              |
| 158                 | TIM2           | TIM2:                                           |
|                     | BRG            | $xxxxx000 - TIM2\_CLK == HCLK$                  |
|                     | [7:0]          | $xxxxx001 - TIM2\_CLK == HCLK/2$                |
|                     |                | $xxxxx010 - TIM2\_CLK == HCLK/4$                |
|                     |                |                                                 |
|                     |                | $xxxxx111 - TIM2\_CLK == HCLK/128$              |
| 70                  | TIM1           | TIM1:                                           |
|                     | BRG            | $xxxxx000 - TIM1\_CLK == HCLK$                  |
|                     | [7:0]          | $xxxxx001 - TIM1\_CLK == HCLK/2$                |
|                     |                | $xxxxx010 - TIM1\_CLK == HCLK/4$                |
|                     |                |                                                 |
|                     |                | $xxxxx111 - TIM1\_CLK == HCLK/128$              |

#### 14.1.11 MDR\_RST\_CLK->UART\_CLOCK

Таблица 101 – Регистр UART\_CLOCK

| Номер  | 3126 | 25    | 24     | <b>23</b> 16 | 150    | 70     |
|--------|------|-------|--------|--------------|--------|--------|
| Доступ | U    | R/W   | R/W    | U            | R/W    | R/W    |
| Сброс  | 0    | 0     | 0      | 0            | 0      | 0      |
|        |      | UART2 | UART 1 |              | UART 2 | UART 1 |
|        |      |       |        |              |        |        |
|        | -    | CLK   | CLK    | -            | BRG    | BRG    |

Таблица 102 – Описание бит регистра UART\_CLOCK

|      |                | 1 аолица 102 – Описание оит регистра UAR1_CLOCK |
|------|----------------|-------------------------------------------------|
| №    | Функциональное | Расшифровка функционального имени бита, краткое |
| бита | имя бита       | описание назначения и принимаемых значений      |
| 3127 | 1              |                                                 |
| 26   | -              |                                                 |
| 25   | UART2          | UART2:                                          |
|      | CLK            | 0 – ;                                           |
|      | EN             | 1 –                                             |
| 24   | UART1          | UART 1:                                         |
|      | CLK            | 0 – ;                                           |
|      | EN             | 1 –                                             |
| 2316 | -              |                                                 |
| 158  | UART2          | UART 2:                                         |
|      | BRG            | $xxxxx000 - UART 2_CLK == HCLK$                 |
|      | [7:0]          | $xxxxx001 - UART 2_CLK == HCLK/2$               |
|      |                | $xxxxx010 - UART 2_CLK == HCLK/4$               |
|      |                |                                                 |
|      |                | $xxxxx111 - UART 2\_CLK == HCLK/128$            |
| 70   | UART1          | UART1:                                          |
|      | BRG            | $xxxxx000 - UART 1_CLK == HCLK$                 |
|      | [7:0]          | $xxxxx001 - UART 1_CLK == HCLK/2$               |
|      |                | $xxxxx010 - UART 1_CLK == HCLK/4$               |
|      |                |                                                 |
|      |                | $xxxxx111 - UART 1_CLK == HCLK/128$             |

#### 14.1.12 MDR\_RST\_CLK->SSP\_CLOCK

# Таблица 103 – Регистр SSP\_CLOCK

| Номер  | 3126 | 25          | 24           | 2316 | 158          | 70           |
|--------|------|-------------|--------------|------|--------------|--------------|
| Доступ | U    | R/W         | R/W          | U    | R/W          | R/W          |
| Сброс  | 0    | 0           | 0            | 0    | 0            | 0            |
|        |      |             |              |      |              |              |
|        |      | SSP2        | SSP 1        |      | SSP 2        | SSP 1        |
|        | -    | SSP2<br>CLK | SSP 1<br>CLK | -    | SSP 2<br>BRG | SSP 1<br>BRG |

### Таблица 104 – Описание бит регистра SSP\_CLOCK

| №    | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 3127 | -              |                                                 |
| 26   | -              |                                                 |
| 25   | SSP2           | SSP 2:                                          |
|      | CLK            | 0 – ;                                           |
|      | EN             | 1 –                                             |
| 24   | SSP1           | SSP 1:                                          |
|      | CLK            | 0 – ;                                           |
|      | EN             | 1 –                                             |
| 2316 | -              |                                                 |
| 158  |                | SSP 2:                                          |
|      |                |                                                 |
|      | SSP2           | $xxxxx000 - SSP 2_CLK == HCLK$                  |
|      | BRG            | $xxxxx001 - SSP 2_CLK == HCLK/2$                |
|      | [7:0]          | $xxxxx010 - SSP 2_CLK == HCLK/4$                |
|      |                |                                                 |
|      |                | $xxxxx111 - SSP 2\_CLK == HCLK/128$             |
| 70   |                | SSP1:                                           |
|      |                |                                                 |
|      | SSP1           | $xxxxx000 - SSP 1_CLK == HCLK$                  |
|      | BRG            | $xxxxx001 - SSP 1_CLK == HCLK/2$                |
|      | [7:0]          | $xxxxx010 - SSP 1_CLK == HCLK/4$                |
|      |                |                                                 |
|      |                | $xxxxx111 - SSP 1_CLK == HCLK/128$              |

# 15 Батарейный домен и часы реального времени MDR\_BKP

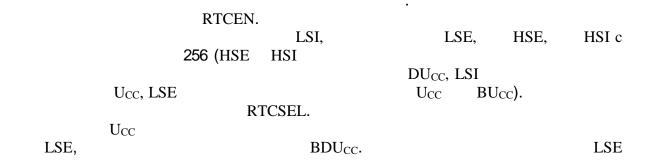




Рисунок 29. Структурная блок-схема батарейного домена и часов реального времени

# 15.1 Часы реального времени



RTC\_20 CAL CAL[6:0]. CAL[6:0] CAL RTC\_DIV 20-RTC\_DIV RTC\_PRL. RTC\_CNT RTC\_ALR RTC\_DIV. STANDBY, RTC\_CNT RTC\_ALR. **STANDBY** WAKEUP.

## 15.2 Регистры аварийного сохранения

. 16 32-. 16- 15-14

### 15.3 Описание регистров блока батарейного домена

Таблица 105 – Описание регистров блока батарейного домена

| Базовый Адрес | Название | Описание                                 |
|---------------|----------|------------------------------------------|
| 0x400D_8000   | MDR_BKP  |                                          |
| Смещение      |          |                                          |
| 0x00          | REG_00   | MDR_BKP->REG_[0D00]<br>MDR_BKP->REG_00 0 |
|               |          |                                          |
| 0x38          | REG_0E   | MDR_BKP->REG_0E<br>14                    |
| 0x3C          | REG_0F   | MDR_BKP->REG_0F 15 RTC, LSE,             |
| 2 12          |          | LSI HSI                                  |
| 0x40          | RTC_CNT  | MDR_BKP->RTC_CNT                         |
| 0x44          | RTC_DIV  | MDR_BKP->RTC_DIV                         |
| 0x48          | RTC_PRL  | MDR_BKP->RTC_PRL                         |
| 0x4C          | RTC_ALRM | MDR_BKP->RTC_ALRM                        |
|               |          | ALRF                                     |
| 0x50          | RTC_CS   | MDR_BKP->RTC_CS                          |

#### 15.3.1 MDR\_BKP->REG\_[0D...00]

MDR\_BKP->REG\_00

MDR\_BKP->REG\_01

MDR\_BKP->REG\_02

MDR\_BKP->REG\_03

MDR\_BKP->REG\_04

MDR\_BKP->REG\_05

MDR\_BKP->REG\_06

MDR\_BKP->REG\_07

MDR\_BKP->REG\_08

MDR\_BKP->REG\_09

MDR\_BKP->REG\_0A

MDR\_BKP->REG\_0B

MDR\_BKP->REG\_0C

MDR\_BKP->REG\_0D

Таблица 106 – Регистры REG\_[0D...00]

| Номер  | 310           |
|--------|---------------|
| Доступ | R/W           |
| Сброс  | U             |
|        | BKP REG[31:0] |

Таблица 107 – Описание бит регистров REG [0D...00]

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|
| 310       | BKP REG[31:0]           |                                                                                            |

#### 15.3.2 MDR\_BKP->REG\_0E

Таблица 108 – Регистр REG\_0E

| Номер  | 3115 | 1412 | 11  | 108 | 7   | 6   | 53  | 20  |
|--------|------|------|-----|-----|-----|-----|-----|-----|
| Доступ | U    | R/W  | R/W | R/W | R/W | R/W | R/W | R/W |
| Сброс  | 0    | U    | 1   | 0   | U   | U   | 0   | 0   |

|   | MODE  | FPOR | Trim  | ITAG R | JTAG A | SelectRI | LOW   |
|---|-------|------|-------|--------|--------|----------|-------|
| • | [2:0] | FFUK | [2:0] | JTAG_B | JIAG_A | [2:0]    | [2:0] |

Таблица 109 – Описание бит регистра REG\_0E

|      | Функциональное | Расшифровка функционального имени бита, краткое описание                                                                                                                                                                          |
|------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| бита | имя бита       | назначения и принимаемых значений                                                                                                                                                                                                 |
| 3115 |                |                                                                                                                                                                                                                                   |
| 1412 | MODE[20]       | MODE[2:0] (PF[6:4]):  000 -                                                                                                                                                                                                       |
|      |                | RESET, MODE[2:0]                                                                                                                                                                                                                  |
| 11   | FPOR           | POR. 1                                                                                                                                                                                                                            |
| 7    | Trim[2:0]      | $\begin{array}{c} DU_{CC}. & Trim \\ DU_{CC}: \\ 000-DU_{CC}+0,10 & - \\ 001-DU_{CC}+0,06 \\ 010-DU_{CC}+0,04 \\ 011-DU_{CC}+0,01 \\ 100-DU_{CC}-0,01 \\ 101-DU_{CC}-0,04 \\ 110-DU_{CC}-0,06 \\ 111-DU_{CC}-0,10 \\ \end{array}$ |
| /    | JIAGB          | JTAG B:<br>0 - ;<br>1<br>JTAG B JTAG A                                                                                                                                                                                            |
| 6    | JTAG A         | JTAG A:<br>0 - ;<br>1 -                                                                                                                                                                                                           |

| 53 | SelectRI[2:0] |                      |                                         |
|----|---------------|----------------------|-----------------------------------------|
|    |               |                      | DU <sub>CC</sub> :                      |
|    |               | 000 - ~ 6 (          | 300 )                                   |
|    |               | 001 - ~ 270 (        | 6,6                                     |
|    |               | 010 - ~ 90           | 20 )                                    |
|    |               | 011 - ~ 24           | 80 )                                    |
|    |               | 100 - ~ 900 (        | 2 )                                     |
|    |               | 101 -~ 2             | 900 )                                   |
|    |               | 110 - ~ 400 (        | 4,4 )                                   |
|    |               | 111 <b>–</b> ~ 100 ( | 19 )                                    |
| 20 | LOW[2:0]      | ,                    | $\overline{\mathrm{DU}_{\mathrm{CC}}}.$ |
|    |               | LOW                  | SelectRI                                |
|    |               |                      | :                                       |
|    |               | 000 – 10             |                                         |
|    |               | 001 – 200            |                                         |
|    |               | 010 - 500            |                                         |
|    |               | 011 – 1              |                                         |
|    |               | 100 –                |                                         |
|    |               | 101 – 40             |                                         |
|    |               | 110 – 80             |                                         |
|    |               | 111 –                | 30                                      |

## 15.3.3 MDR\_BKP->REG\_0F

Таблица 110 - Регистр REG\_0F

| Номер  | 15  | 14 | 13  | 125            | 4   | 32       | 1   | 0   |
|--------|-----|----|-----|----------------|-----|----------|-----|-----|
| Доступ | R/W | U  | RO  | R/W            | R/W | R/W      | R/W | R/W |
| Сброс  | 1   | 0  | 0   | 0              | 0   | 0        | 0   | 0   |
|        | LSI |    | LSE | CAL            | RTC | RTC      | LSE | LSE |
|        | ON  | -  | RDY | [ <b>7:0</b> ] | EN  | SEL[1:0] | BYP | ON  |

| Доступ<br>Сброс | R/W<br>0<br>RTC | 0<br>0         | 0<br>HSI   | RO<br>1<br><b>HSI</b> | 1<br>HSI | 1 <b>LSI</b> | 0<br>LSI   |
|-----------------|-----------------|----------------|------------|-----------------------|----------|--------------|------------|
|                 | RESET           | <b>STANDBY</b> | TRIM [5:0] | RDY                   | ON       | RDY          | TRIM [4:0] |

Таблица 111 – Описание бит регистра REG\_0F

| No   | Функциональное | Расшифровка функционального имени бита, краткое описание |
|------|----------------|----------------------------------------------------------|
| бита | имя бита       | назначения и принимаемых значений                        |
| 31   | RTC RESET      | :                                                        |
|      |                | 0 – ;                                                    |
|      |                | 1 –                                                      |
| 30   | STANDBY        | DU <sub>CC</sub> :                                       |
|      |                | 0 – ;                                                    |
|      |                | 1 –                                                      |
|      |                | ALRF                                                     |
|      |                | WAKEUP                                                   |
| 2924 | HSI            | HSI.                                                     |
|      | TRIM[5:0]      | ( 31)                                                    |

| 23   | HSI       | HSI :                                            |
|------|-----------|--------------------------------------------------|
| 23   | RDY       | 0 – ;                                            |
|      |           | 1 –                                              |
| 22   | HSI       | HSI:                                             |
|      | ON        | 0 – ;                                            |
|      |           | 1 –                                              |
| 21   | LSI       | LSI :                                            |
|      | RDY       | 0 – ;                                            |
|      |           | 1 –                                              |
| 2016 | LSI       | LSI.                                             |
|      | TRIM[4:0] | ( 30)                                            |
| 15   | LSI       | LSI:                                             |
|      | ON        | 0-;                                              |
|      |           | 1 –                                              |
| 14   | -         |                                                  |
| 13   | LSE       | LSE :                                            |
|      | RDY       | 0 — ;                                            |
|      |           | 1 –                                              |
| 125  | CAL[7:0]  | 620                                              |
|      |           | , $2^{20}$ CAL :                                 |
|      |           | 00000000 - 0                                     |
|      |           | 00000001 - 1                                     |
|      |           | <br>11111111 – 256                               |
|      |           | , 32768.00000                                    |
|      |           | CAL = 0 = 32768.00000                            |
|      |           | CAL = 0 = 32765,36666<br>CAL = 1 = 32767,96875 ; |
|      |           |                                                  |
|      |           | CAL = 255 = 32760,03125                          |
| 4    | RTC       | :                                                |
|      | EN        | 0 – ;                                            |
|      |           | 1 –                                              |
| 32   | RTC       |                                                  |
|      | SEL[1:0]  | :                                                |
|      |           | 00 – LSI                                         |
|      |           | 01 – LSE                                         |
|      |           | 10 – HSIRTC ( CLKRST)                            |
|      |           | 11 – HSERTC ( CLKRST)                            |
| 1    | LSE       | LSE:                                             |
|      | BYP       | 0 — ;                                            |
|      |           | 1- ( )                                           |
| 0    | LSE       | LSE:                                             |
|      | ON        | 0 — ;                                            |
|      |           | 1 –                                              |

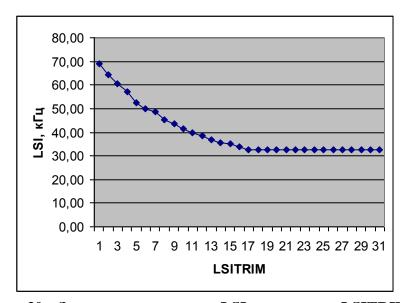



Рисунок 30. Зависимость частоты LSI от значения LSITRIM

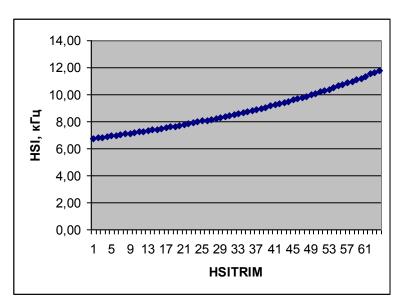



Рисунок 31. Зависимость частоты HSI от значения HSITRIM

#### MDR\_BKP->RTC\_CNT

#### Таблица 112 – Регистр RTC\_CNT

| Номер  | 310       |
|--------|-----------|
| Доступ | R/W       |
| Сброс  | 0         |
|        | RTC       |
|        | CNT[31:0] |

#### Таблица 113 - Описание бит регистра RTC\_CNT

| $N_{\underline{0}}$ | Функциональное | Расшифровка функционального имени бита, краткое описание |
|---------------------|----------------|----------------------------------------------------------|
| бита                | имя бита       | назначения и принимаемых значений                        |
| 310                 | RTC            |                                                          |
|                     | CNT[31:0]      |                                                          |

#### 15.3.4 MDR\_BKP->RTC\_DIV

#### Таблица 114 – Регистр RTC DIV

| Номер  | 3120 | 190       |
|--------|------|-----------|
| Доступ | U    | R/W       |
| Сброс  | 0    | 0         |
|        |      | RTC       |
|        | -    | DIV[19:0] |

#### Таблица 115 - Описание бит регистра RTC\_DIV

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, назначения и принимаемых значений | кратк | ое описание |
|-----------|-------------------------|---------------------------------------------------------------------------|-------|-------------|
| 3120      | -                       |                                                                           |       |             |
| 190       | RTC                     |                                                                           | •     |             |
|           | DIV[19:0]               |                                                                           |       |             |

#### 15.3.5 MDR\_BKP->RTC\_PRL

|        |      | Таблица 116 – Регистр RTC_PRL |
|--------|------|-------------------------------|
| Номер  | 3120 | 190                           |
| Доступ | U    | R/W                           |
| Сброс  | 0    | 0                             |
|        |      | RTC                           |
|        | •    | PRL[19:0]                     |

#### Таблица 117 – Описание бит регистра RTC\_PRL

| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |
|------|----------------|----------------------------------------------------------|
| бита | имя бита       | назначения и принимаемых значений                        |
| 3120 | •              |                                                          |
| 190  | RTC            |                                                          |
|      | PRL[19:0]      |                                                          |

#### 15.3.6 MDR\_BKP->RTC\_ALRM

| Таблица | 110   | DOCHOTO | <b>DTC</b> | AIDM |
|---------|-------|---------|------------|------|
| таолина | 119 – | Регистр | KIU        | ALKW |

|        | i www.iii i i i i i i i i i i i i i i i |
|--------|-----------------------------------------|
| Номер  | 310                                     |
| Доступ | R/W                                     |
| Сброс  | 0                                       |
|        | RTC                                     |
|        | ALRM[31:0]                              |

#### Таблица 119 - Описание бит регистра RTC\_ALRM

| No   | Функциональное | Расшифровка функционального имени бита, краткое описание |
|------|----------------|----------------------------------------------------------|
| бита | имя бита       | назначения и принимаемых значений                        |
| 310  | RTC            |                                                          |
|      | ALRM[31:0]     | ALRF                                                     |

#### 15.3.7 MDR\_BKP->RTC\_CS

Таблица 120 – Регистр RTC\_CS

| Номер  | 317 | 6   | 5       | 4       | 3      | 2    | 1    | 0   |
|--------|-----|-----|---------|---------|--------|------|------|-----|
| Доступ | U   | R/W | R/W     | R/W     | R/W    | R/W  | R/W  | R/W |
| Сброс  | 0   | 0   | 0       | 0       | 0      | 0    | 0    | 0   |
|        | -   | WEC | ALRF_IE | SECF_IE | OWF_IE | ALRF | SECF | OWF |

Таблица 121 – Описание бит регистра RTC\_PRL

| №    | Функциональное | Расшиф  | Расшифровка функционального имени бита, краткое описание |        |          |           |
|------|----------------|---------|----------------------------------------------------------|--------|----------|-----------|
| бита | имя бита       | назначе | ния и прини                                              | маемых | значений |           |
| 307  | -              |         |                                                          |        |          |           |
| 6    | WEC            |         | :                                                        |        |          |           |
|      |                | 0 –     |                                                          |        | RTC;     |           |
|      |                | 1 -     |                                                          |        | ,        | RTC       |
| 5    | ALRF_IE        |         |                                                          |        |          |           |
|      |                |         | RTC_ALRM:                                                |        |          |           |
|      |                | 0 –     | ;                                                        |        |          |           |
|      |                | 1 -     |                                                          |        |          |           |
| 4    | SECF_IE        |         |                                                          |        |          |           |
|      |                |         |                                                          |        | :        |           |
|      |                | 0 –     |                                                          | ;      |          |           |
|      | _              | 1 –     |                                                          |        |          |           |
| 3    | OWF_IE         |         |                                                          |        |          |           |
|      |                | RTC_CN  | IT:                                                      |        |          |           |
|      |                | 0 –     |                                                          |        |          |           |
|      |                | 1 -     |                                                          |        |          | 700       |
| 2    | ALRF           | 0       |                                                          |        |          | RTC_ALRM: |
|      |                | 0 –     | ;                                                        |        |          |           |
|      |                | 1 –     | •                                                        |        | 1        |           |
| 1    | SECF           |         |                                                          |        | <u> </u> |           |
| 1    | SECF           |         |                                                          |        |          |           |
|      |                | 0 –     |                                                          |        |          |           |
|      |                | 1 _     |                                                          | ,      |          |           |
|      |                | 1       |                                                          | •      | 1        |           |
| 0    | OWF            |         |                                                          |        | RTC      | _CNT:     |
|      | 0111           | 0 –     |                                                          | :      | KIC_     | _01\1.    |
|      | 1              |         |                                                          | ,      |          |           |

Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| 1 - |   |  |
|-----|---|--|
|     | 1 |  |

## 16 Порты ввода-вывода MDR\_PORTx

6 / . 16-

•

RXTX OE , JTAG.

Таблица 122 – Порты ввода-вывода

1

|       | Цифровая функция      |                         |                         |    |                            |     |                               |     |  |
|-------|-----------------------|-------------------------|-------------------------|----|----------------------------|-----|-------------------------------|-----|--|
| Вывод | Аналоговая<br>функция | Порт IO<br>MODE[1:0]=00 | Основная<br>МОDE[1:0]=0 |    | Альтернативі<br>МОDE[1:0]= |     | Переопределені<br>МОDE[1:0]=1 |     |  |
| Бывод |                       | ANALOG_EN=1             |                         |    | ANALOG_EN=1                |     | ANALOG_EN=1                   |     |  |
|       | ANALOG_EN=0           | ANALOG_EN=1             | Порт А                  | -1 | ANALOG_EN                  | 1-1 | ANALOG_EN-                    | -1  |  |
| PA0   | _                     | PA0                     | DATA0                   | 1) | EXT INT1                   | 9)  | _                             |     |  |
| PA1   | _                     | PA1                     | DATA1                   |    | TMR1_CH1                   |     | TMR2_CH1                      |     |  |
| PA2   | _                     | PA2                     | DATA2                   |    | TMR1 CH1N                  |     | TMR2_CH1N                     | 1 1 |  |
| PA3   | _                     | PA3                     | DATA3                   |    | TMR1 CH2                   |     | TMR2_CH2                      | 1 1 |  |
| PA4   | _                     | PA4                     | DATA4                   |    | TMR1 CH2N                  |     | TMR2 CH2N                     | 1 1 |  |
| PA5   | _                     | PA5                     | DATA5                   |    | TMR1 CH3                   |     | TMR2 CH3                      |     |  |
| PA6   | _                     | PA6                     | DATA6                   |    | CAN1 TX                    | 2)  | UART1 RXD                     |     |  |
| PA7   | _                     | PA7                     | DATA7                   |    | CAN1 RX                    |     | UART1 TXD                     |     |  |
| PA8   | _                     | PA8                     | DATA8                   |    | TMR1_CH3N                  |     | TMR2_CH3N                     |     |  |
| PA9   | -                     | PA9                     | DATA9                   |    | TMR1_CH4                   |     | TMR2_CH4                      |     |  |
| PA10  | -                     | PA10                    | DATA10                  |    | nUART1DTR                  | 10) | TMR2_CH4N                     |     |  |
| PA11  | -                     | PA11                    | DATA11                  |    | nUART1RTS                  |     | TMR2_BLK                      |     |  |
| PA12  | -                     | PA12                    | DATA12                  |    | nUART1RI                   |     | TMR2 ETR                      |     |  |
| PA13  | -                     | PA13                    | DATA13                  |    | nUART1DCD                  |     | TMR1 CH4N                     |     |  |
| PA14  | -                     | PA14                    | DATA14                  |    | nUART1DSR                  |     | TMR1 BLK                      |     |  |
| PA15  | -                     | PA15                    | DATA15                  |    | nUART1CTS                  |     | TMR1_ETR                      |     |  |
|       | <u>I</u>              |                         | Порт В                  |    |                            | l   | . –                           |     |  |
| PB0   | -                     | PB0 JA_TDO              | DATA16                  | 1) | TMR3_CH1                   |     | UART1_TXD                     |     |  |
| PB1   | -                     | PB1 JA_TMS              | DATA17                  |    | TMR3_CH1N                  |     | UART2_RXD                     |     |  |
| PB2   | -                     | PB2 JA_TCK              | DATA18                  |    | TMR3_CH2                   |     | CAN1_TX                       |     |  |
| PB3   | -                     | PB3 JA_TDI              | DATA19                  |    | TMR3_CH2N                  |     | CAN1_RX                       |     |  |
| PB4   | -                     | PB4 JA_TRST             | DATA20                  |    | TMR3_BLK                   |     | TMR3_ETR                      |     |  |
| PB5   | -                     | PB5                     | DATA21                  |    | UART1_TXD                  | 10) | TMR3_CH3                      |     |  |
| PB6   | -                     | PB6                     | DATA22                  |    | UART1_RXD                  |     | TMR3_CH3N                     |     |  |
| PB7   | -                     | PB7                     | DATA23                  |    | nSIROUT1                   |     | TMR3_CH4                      |     |  |
| PB8   | -                     | PB8                     | DATA24                  |    | COMP_OUT                   | 7)  | TMR3_CH4N                     |     |  |
| PB9   | -                     | PB9                     | DATA25                  |    | nSIRIN1                    | 10) | EXT_INT4                      | ]   |  |
| PB10  | -                     | PB10                    | DATA26                  |    | EXT_INT2                   | 9)  | nSIROUT1                      | ]   |  |
| PB11  | _                     | PB11                    | DATA27                  |    | EXT_INT1                   |     | COMP_OUT                      |     |  |
| PB12  | _                     | PB12                    | DATA28                  |    | SSP1_FSS                   |     | SSP2_FSS                      |     |  |
| PB13  | -                     | PB13                    | DATA29                  |    | SSP1_CLK                   |     | SSP2_CLK                      | ]   |  |
| PB14  |                       | PB14                    | DATA30                  |    | SSP1_RXD                   |     | SSP2_RXD                      |     |  |
| PB15  | -                     | PB15                    | DATA31                  |    | SSP1_TXD                   |     | SSP2_TXD                      |     |  |

| Порт С |           |          |             |                                         |          |                    |          |            |
|--------|-----------|----------|-------------|-----------------------------------------|----------|--------------------|----------|------------|
| P 0    | _         |          | P 0         | READY 17)                               | 1)       | SCL1               | 11)      | SSP2_FSS   |
| P 1    | _         |          | P 1         | OE                                      |          | SDA1               |          | SSP2_CLK   |
| P 2    | _         |          | P 2         | WE                                      |          | TMR3_CH1           | 12)      | SSP2_RXD   |
| P 3    | _         |          | P 3         | BE0                                     |          | TMR3_CH1N          |          | SSP2 TXD   |
| P 4    | _         |          | P 4         | BE1                                     |          | TMR3_CH2           |          | TMR1_CH1   |
| P 5    | _         |          | P 5         | BE2                                     |          | TMR3_CH2N          |          | TMR1_CH1N  |
| P 6    | _         |          | P 6         | BE3                                     |          | TMR3_CH3           |          | TMR1_CH2   |
| P 7    | _         |          | P 7         | CLOCK                                   |          | TMR3_CH3N          |          | TMR1 CH2N  |
| P 8    | _         |          | P 8         | CAN1_TX                                 | 2)       | TMR3 CH4           |          | TMR1 CH3   |
| P 9    | _         |          | P 9         | CAN1_RX                                 |          | TMR3_CH4N          |          | TMR1_CH3N  |
| P 10   | _         |          | P 10        | -                                       |          | TMR3_ETR           |          | TMR1_CH4   |
| P 11   | _         |          | P 11        | _                                       |          | TMR3_BLK           |          | TMR1 CH4N  |
| P 12   | _         |          | P 12        | _                                       |          | EXT_INT2           |          | TMR1 ETR   |
| P 13   | _         |          | P 13        | _                                       |          | EXT_INT4           | 9)       | TMR1_BLK   |
| P 14   | _         | 1        | P 14        | _                                       |          | SSP2_FSS           | 13)      | CAN2_RX    |
| P 15   | _         | 1        | P 15        | _                                       |          | SSP2_RXD           |          | CAN2_TX    |
| 1 10   |           |          | 1 10        | Порт <b>D</b>                           | l        | 551 <u>2_</u> 1012 |          | 0111(2_111 |
| PD0    | ADC0_REF+ | 5        | PD0 JB_TMS  | TMR1_CH1N                               | 3)       | UART2_RXD          | 14)      | TMR3_CH1   |
| PD1    | ADC1_REF- |          | PD1 JB_TCK  | TMR1_CH1                                |          | UART2_TXD          |          | TMR3 CH1N  |
| PD2    | ADC2      |          | PD2 JB_TRST | BUSY1                                   | 1)       | SSP2 RXD           | 13)      | TMR3 CH2   |
| PD3    | ADC3      |          | PD3 JB TDI  | _                                       |          | SSP2_FSS           |          | TMR3 CH2N  |
| PD4    | ADC4      |          | PD4 JB_TDO  | TMR1_ETR                                |          | nSIROUT2           | 14)      | TMR3 BLK   |
| PD5    | ADC5      |          | PD5         | CLE                                     | 1)       | SSP2_CLK           | 13)      | TMR2 ETR   |
| PD6    | ADC6      |          | PD6         | ALE                                     |          | SSP2_TXD           | 13)      | TMR2_BLK   |
| PD7    | ADC7      |          | PD7         | TMR1_BLK                                | 3)       | nSIRIN2            | 14)      | UART1_RXD  |
| PD8    | ADC8      |          | PD8         | TMR1_CH4N                               |          | TMR2_CH1           |          | UART1_TXD  |
| PD9    | ADC9      |          | PD9         | CAN2_TX                                 | 4)       | TMR2_CH1N          |          | SSP1_FSS   |
| PD10   | ADC10     |          | PD10        | TMR1 CH2                                | 3)       | TMR2 CH2           |          | SSP1 CLK   |
| PD11   | ADC11     |          | PD11        | TMR1_CH2N                               |          | TMR2_CH2N          |          | SSP1_RXD   |
| PD12   | ADC12     |          | PD12        | TMR1_CH3                                |          | TMR2_CH3           |          | SSP1 TXD   |
| PD13   | ADC13     |          | PD13        | TMR1 CH3N                               |          | TMR2_CH3N          |          | CAN1 TX    |
| PD14   | ADC14     |          | PD14        | TMR1_CH4                                |          | TMR2_CH4           |          | CAN1_RX    |
| PD15   | ADC15     |          | PD15        | CAN2_RX                                 | 4)       | BUSY2              | 1)       | EXT_INT3   |
|        |           |          | 1           | Порт Е                                  | I        |                    | l        |            |
| PE0    | DAC2_OUT  | 6        | PE0         | ADDR16                                  | 1)       | TMR2_CH1           | 15)      | CAN1 RX    |
| PE1    | DAC2_REF  | 1        | PE1         | ADDR17                                  |          | TMR2_CH1N          |          | CAN1_TX    |
| PE2    | COMP_IN1  | 7        | PE2         | ADDR18                                  |          | TMR2_CH3           |          | TMR3_CH1   |
| PE3    | COMP_IN2  |          | PE3         | ADDR19                                  |          | TMR2_CH3N          |          | TMR3_CH1N  |
| PE4    | COMP_REF+ | 1        | PE4         | ADDR20                                  |          | TMR2_CH4N          |          | TMR3_CH2   |
| PE5    | COMP_REF- | 1        | PE5         | ADDR21                                  |          | TMR2_BLK           |          | TMR3_CH2N  |
| PE6    | OSC_IN32  | 8        | PE6         | ADDR22                                  |          | CAN2_RX            | 4)       | TMR3_CH3   |
| PE7    | OSC_OUT32 | 1        | PE7         | ADDR23                                  |          | CAN2_TX            |          | TMR3_CH3N  |
| PE8    | COMP_IN3  | 7        | PE8         | ADDR24                                  |          | TMR2_CH4           | 15)      | TMR3_CH4   |
| PE9    | DAC1 OUT  |          | PE9         | ADDR25                                  |          | TMR2 CH2           |          | TMR3 CH4N  |
| PE10   | DAC1 REF  | 1        | PE10        | ADDR26                                  |          | TMR2_CH2N          |          | TMR3_ETR   |
| PE11   | -         |          | PE11        | ADDR27                                  |          | nSIRIN1            |          | TMR3_BLK   |
| PE12   | _         | 1        | PE12        | ADDR28                                  |          | SSP1_RXD           | 16)      | UART1 RXD  |
| PE13   | _         | 1        | PE13        | ADDR29                                  |          | SSP1_FSS           |          | UART1 TXD  |
| PE14   | _         | 1        | PE14        | ADDR30                                  |          | TMR2_ETR           | 15)      | SCL1       |
| PE15   | _         | 1        | PE15        | ADDR31                                  |          | EXT INT3           | 9)       | SDA1       |
| 1110   | I .       | <u> </u> | 1.2.2       | 111111111111111111111111111111111111111 | <u> </u> |                    | <u> </u> | ~2111      |

## Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

|      | Порт F |             |        |    |           |     |           |     |
|------|--------|-------------|--------|----|-----------|-----|-----------|-----|
| PF0  | -      | PF0         | ADDR0  | 1) | SSP1TXD   | 16) | UART2_RXD | 14) |
| PF1  | -      | PF1         | ADDR1  |    | SSP1CLK   |     | UART2_TXD |     |
| PF2  | -      | PF2         | ADDR2  |    | SSP1FSS   |     | CAN2_RX   |     |
| PF3  | -      | PF3         | ADDR3  |    | SSP1RXD   |     | CAN2_TX   |     |
| PF4  | -      | PF4 MODE[0] | ADDR4  |    | -         |     | -         |     |
| PF5  | -      | PF5 MODE[1] | ADDR5  |    | -         |     | -         |     |
| PF6  | -      | PF6 MODE[2] | ADDR6  |    | TMR1_CH1  | 3)  | -         |     |
| PF7  | -      | PF7         | ADDR7  |    | TMR1_CH1N |     | TMR3_CH1  |     |
| PF8  | -      | PF8         | ADDR8  |    | TMR1_CH2  |     | TMR3_CH1N |     |
| PF9  | -      | PF9         | ADDR9  |    | TMR1_CH2N |     | TMR3_CH2  |     |
| PF10 | -      | PF10        | ADDR10 |    | TMR1_CH3  |     | TMR3_CH2N |     |
| PF11 | -      | PF11        | ADDR11 |    | TMR1_CH3N |     | TMR3_ETR  |     |
| PF12 | -      | PF12        | ADDR12 |    | TMR1_CH4  |     | SSP2_FSS  |     |
| PF13 | -      | PF13        | ADDR13 |    | TMR1_CH4N |     | SSP2_CLK  |     |
| PF14 | -      | PF14        | ADDR14 |    | TMR1_ETR  |     | SSP2_RXD  |     |
| PF15 | -      | PF15        | ADDR15 |    | TMR1_BLK  |     | SSP2_TXD  |     |

#### Примечания:

| примечиния. |         |        |
|-------------|---------|--------|
| 1)          | EX      | T_BUS. |
| 2)          |         | CAN1.  |
| 3)          | 1.      |        |
| 4)          |         | CAN2.  |
| 5)          |         |        |
| 6)          |         |        |
| 7)          |         |        |
| 8)          | LSE.    |        |
| 9)          |         |        |
| 10)         |         | UART1. |
| 11)         |         | I2C.   |
| 12)         | 3.      |        |
| 13)         |         | SSP2.  |
| 14)         |         | UART2. |
| 15)         | 2.      |        |
| 16)         |         | SSP1.  |
| 17)         | 1986 94 |        |

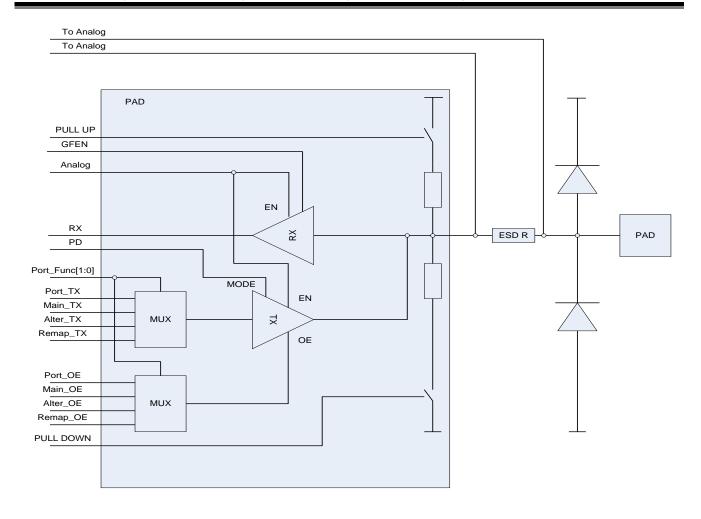



Рисунок 32. Порты ввода-вывода

### 16.1 Описание регистров портов ввода-вывода

Таблица 123 – Описание регистров портов ввода-вывода

| Базовый Адрес | Название     | Описание          |
|---------------|--------------|-------------------|
| 0x400A_8000   | MDR_PORTA    |                   |
| 0x400B_0000   | MDR_PORTB    | В                 |
| 0x400B_8000   | MDR_PORTC    | C                 |
| 0x400C_0000   | MDR_PORTD    | D                 |
| 0x400C_8000   | MDR_PORTE    | E                 |
| 0x400E_8000   | MDR_PORTF    | F                 |
| Смещение      |              |                   |
| 0x00          | RXTX[15:0]   | MDR_PORTx->RXTX   |
| 0x04          | OE[15:0]     | MDR_PORTx->OE     |
| 0x08          | FUNC[31:0]   | MDR_PORTx->FUNC   |
| 0x0C          | ANALOG[15:0] | MDR_PORTx->ANALOG |
| 0x10          | PULL[31:0]   | MDR_PORTx->PULL   |
| 0x14          | PD[31:0]     | MDR_PORTx->PD     |
| 0x18          | PWR[31:0]    | MDR_PORTx->PWR    |
| 0x1C          | GFEN[15:0]   | MDR_PORTx->GFEN   |

#### 16.1.1 MDR\_PORTx->RXTX

#### Таблица 124 – Регистр RXTX

| Номер  | 3116 | 150        |
|--------|------|------------|
| Доступ | U    | R/W        |
| Сброс  | 0    | 0          |
|        |      | PORT       |
|        | -    | RXTX[15:0] |

#### Таблица 125 – Описание бит регистра RXTX

| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |
|------|----------------|----------------------------------------------------------|
| бита | имя бита       | назначения и принимаемых значений                        |
| 3116 | -              |                                                          |
| 150  | PORT           |                                                          |
|      | RXTX[15:0]     |                                                          |

#### 16.1.2 MDR\_PORTx->OE

#### Таблица 126 – Регистр ОЕ

| Номер  | 3116 | 150      |
|--------|------|----------|
| Доступ | U    | R/W      |
| Сброс  | 0    | 0        |
|        |      | PORT     |
|        | -    | OE[15:0] |

#### Таблица 127 – Описание бит регистра ОЕ

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|
| 3116      | -                       |                                                                                            |
| 150       | PORT                    |                                                                                            |
|           | OE[15:0]                | :                                                                                          |
|           |                         | 1- ;                                                                                       |
|           |                         | 0 –                                                                                        |

#### 16.1.3 MDR\_PORTx->FUNC

#### Таблица 128 – Регистр FUNC

| Номер  | 31          | 30  | ••• | 3    | 2       | 1   | 0       |
|--------|-------------|-----|-----|------|---------|-----|---------|
| Доступ | R/W         | R/W | ••• | R/W  | R/W     | R/W | R/W     |
| Сброс  | 0           | 0   |     | 0    | 0       | 0   | 0       |
|        | MODE15[1:0] |     | ••• | MODI | E1[1:0] | MOD | E0[1:0] |

#### Таблица 129 – Описание бит регистра FUNC

| №    | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 312  | MODEx          | MODE0                                           |
| 10   | MODE0[1:0]     | :                                               |
|      |                | 00-;                                            |
|      |                | 01 – ;                                          |
|      |                | 10 –                                            |
|      |                | 11 –                                            |

#### 16.1.4 MDR\_PORTx->ANALOG

#### Таблица 130 – Регистр ANALOG

| Номер  | 3116 | 150      |
|--------|------|----------|
| Доступ | U    | R/W      |
| Сброс  | 0    | 0        |
|        | _    | ANALOG   |
|        | -    | EN[15:0] |

## Таблица 131 – Описание бит регистра ANALOG

| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |
|------|----------------|----------------------------------------------------------|
| бита | имя бита       | назначения и принимаемых значений                        |
| 3116 | -              |                                                          |
| 150  | ANALOG         | :                                                        |
|      | EN[15:0]       | 0- ;                                                     |
|      |                | 1 –                                                      |

#### 16.1.5 MDR\_PORTx->PULL

#### Таблица 132 – Регистр PULL

| Номер  | 3116     | 150        |
|--------|----------|------------|
| Доступ | R/W      | R/W        |
| Сброс  | 0        | 0          |
|        | PULL     | PULL       |
|        | UP[15:0] | DOWN[15:0] |

#### Таблица 133 – Описание бит регистра PULL

| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |  |  |  |  |
|------|----------------|----------------------------------------------------------|--|--|--|--|
| бита | имя бита       | назначения и принимаемых значений                        |  |  |  |  |
| 3116 | PULL           |                                                          |  |  |  |  |
|      | UP15:0]        | :                                                        |  |  |  |  |
|      |                | 0-;                                                      |  |  |  |  |
|      |                | 1 – ( ~50 )                                              |  |  |  |  |
| 150  | PULL           |                                                          |  |  |  |  |
|      | DOWN[15:0]     | :                                                        |  |  |  |  |
|      |                | 0 – ;                                                    |  |  |  |  |
|      |                | 1 – ( ~50 )                                              |  |  |  |  |

#### 16.1.6 MDR\_PORTx->PD

#### Таблица 134 – Регистр PD

| Номер  | 3116      | 150      |
|--------|-----------|----------|
| Доступ | R/W       | R/W      |
| Сброс  | 0         | 0        |
|        | PORT      | PORT     |
|        | SHM[15:0] | PD[15:0] |

#### Таблица 135 – Описание бит регистра PD

| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |       |  |  |  |  |
|------|----------------|----------------------------------------------------------|-------|--|--|--|--|
| бита | имя бита       | назначения и принимаемых значений                        |       |  |  |  |  |
| 3116 | PORT           |                                                          |       |  |  |  |  |
|      | SHM[15:0]      | :                                                        |       |  |  |  |  |
|      |                | 0 –                                                      | 200 ; |  |  |  |  |
|      |                | 1 –                                                      | 400   |  |  |  |  |
| 150  | PORT           | ·                                                        |       |  |  |  |  |
|      | PD[15:0]       | :                                                        |       |  |  |  |  |
|      |                | 0 — ;                                                    |       |  |  |  |  |
|      |                | 1 –                                                      |       |  |  |  |  |

#### 16.1.7 MDR\_PORTx->PWR

#### Таблица 136 - Регистр PWR

| Номер  | 31         | 30  |     | 3   | 2      | 1   | 0      |
|--------|------------|-----|-----|-----|--------|-----|--------|
| Доступ | R/W        | R/W |     | R/W | R/W    | R/W | R/W    |
| Сброс  | 0          | 0   | ••• | 0   | 0      | 0   | 0      |
|        | PWR15[1:0] |     | ••• | PWR | 1[1:0] | PWR | 0[1:0] |

#### Таблица 137 – Описание бит регистра PORTx\_PWR

| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |  |  |  |  |  |
|------|----------------|----------------------------------------------------------|--|--|--|--|--|
| бита | имя бита       | назначения и принимаемых значений                        |  |  |  |  |  |
| 312  | PWRx           | PWR0                                                     |  |  |  |  |  |
| 10   | PWR0[1:0]      | :                                                        |  |  |  |  |  |
|      |                | 00 – ( )                                                 |  |  |  |  |  |
|      |                | 01 – ( 100 )                                             |  |  |  |  |  |
|      |                | 10 – ( 20 )                                              |  |  |  |  |  |
|      |                | 11 – ( 10 )                                              |  |  |  |  |  |

#### 16.1.8 MDR\_PORTx->GFEN

#### Таблица 138 – Регистр GFEN

| Номер  | 3116 | 150        |
|--------|------|------------|
| Доступ | R/W  | R/W        |
| Сброс  | 0    | 0          |
|        | •    | GFEN[15:0] |

#### Таблица 139 – Описание бит регистра GFEN

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |   |   |      |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|---|---|------|--|
| 3116      | -                       |                                                                                            |   |   |      |  |
| 150       | GFEN[15:0]              |                                                                                            |   | : |      |  |
|           |                         | 0 –                                                                                        | • |   |      |  |
|           |                         | 1 -                                                                                        | ( |   | 10 ) |  |

## 17 Детектор напряжения питания MDR\_POWER

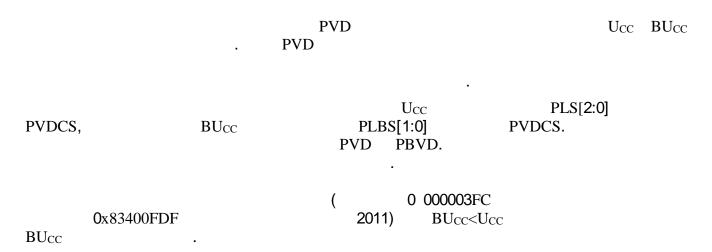



Таблица 140 – Типовые уровни напряжений детектора питания

| Параметр                         | Не менее | Типовое | Не более |
|----------------------------------|----------|---------|----------|
| , U <sub>CC</sub> ,              | 2,0      | -       | 3,6      |
| , BU <sub>CC</sub> ,             | 1,8      | -       | 3,6      |
| $PVD  U_{CC},  PLS = "000",$     |          | 2,0     |          |
| $PVD  U_{CC},  PLS = "001",$     |          | 2,2     |          |
| $PVD  U_{CC},  PLS = "010",$     |          | 2,4     |          |
| $PVD  U_{CC},  PLS = "011",$     |          | 2,6     |          |
| $PVD  U_{CC},  PLS = "100",$     |          | 2,8     |          |
| $PVD  U_{CC},  PLS = "101",$     |          | 3,0     |          |
| $PVD  U_{CC},  PLS = "110",$     |          | 3,2     |          |
| $PVD  U_{CC},  PLS = "111",$     |          | 3,4     |          |
| PBVD $BU_{CC}$ , $PLS = "00"$ ,  |          | 1,8     |          |
| PBVD $BU_{CC}$ , $PLS = "01"$ ,  |          | 2,2     |          |
| PBVD $BU_{CC}$ , $PBLS = "10"$ , |          | 2,6     |          |
| PBVD $BU_{CC}$ , $PBLS = "11"$ , |          | 3,0     |          |

Таблица 141 – Описание регистров блока PVD

| Базовый Адрес | Название     | Описание         |
|---------------|--------------|------------------|
| 0x4005_8000   | MDR_POWER    |                  |
| Смещение      |              |                  |
| 0x00          | PVDCS [12:0] | MDR_POWER->PVDCS |
|               |              |                  |

#### 17.1.1 MDR\_POWER->PVDCS

#### Таблица 142 – Регистр PVDCS

| Номер  | 9     | 8      | 7   | 6    | 53           | 21         | 0         |
|--------|-------|--------|-----|------|--------------|------------|-----------|
| Доступ | R/W   | R/W    | R/W | R/W  | R/W          | R/W        | R/W       |
| Сброс  | 0     | 0      | 0   | 0    | 000          | 00         | 0         |
|        | IEPVD | IEPVBD | PVD | PVBD | PLS<br>[2:0] | PBLS [1:0] | PVD<br>EN |

| Номер  | 3112 | 11  | 10   |
|--------|------|-----|------|
| Доступ | U    | R/W | R/W  |
| Сброс  | 0    | 0   | 0    |
|        | •    | INV | INVB |

## Таблица 143 – Описание бит регистра PVDCS

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |  |  |  |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|
| 3112      | -                       |                                                                                            |  |  |  |  |
| 11        | INV                     | PVD:<br>0 - ;<br>1 - ,                                                                     |  |  |  |  |
| 10        | INVB                    | PVBD:<br>0 - ;<br>1 - ,                                                                    |  |  |  |  |
| 9         | IEPVD                   | PVD:<br>0 - ;<br>1 - ;<br>0, ,                                                             |  |  |  |  |
| 8         | IEPVBD                  | PVBD:<br>0 - ;<br>1<br>0, ,                                                                |  |  |  |  |
| 7         | PVD                     | , 0.<br>0 — ; PLS;<br>1 — , PLS<br><u>Примечание —</u>                                     |  |  |  |  |

## Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| №    | Функциональное | Расшифровка функционального име  | ни бита, кратко | е описание |
|------|----------------|----------------------------------|-----------------|------------|
| бита | имя бита       | назначения и принимаемых значени |                 |            |
| 6    | PVBD           |                                  |                 |            |
|      | ·              | ,                                | 0.              |            |
|      |                | ,                                | :               |            |
|      |                | 0 –                              | ,               | PBLS;      |
|      |                | 1 –                              | ,               | PBLS       |
|      |                | <u> Примечание — </u>            |                 |            |
|      |                | -                                |                 |            |
| 53   | PLS[2:0]       |                                  |                 |            |
|      |                | :                                |                 |            |
|      |                | 000 - 2,0                        |                 |            |
|      |                | 001 - 2.2                        |                 |            |
|      |                | 010 - 2,4                        |                 |            |
|      |                | 011 – 2,6                        |                 |            |
|      |                | 100 - 2.8                        |                 |            |
|      |                | 101 – 3,0                        |                 |            |
|      |                | 110 – 3,2                        |                 |            |
| 2 4  | DDI 011 01     | 111 – 3,4                        |                 |            |
| 21   | PBLS[1:0]      |                                  |                 |            |
|      |                | 00 - 1,8                         |                 |            |
|      |                |                                  |                 |            |
|      |                | 01 - 2.2 $10 - 2.6$              |                 |            |
|      |                | 10 - 2,0 $11 - 3,0$              |                 |            |
| 0    | PVDEN          | 11 5,0                           |                 | •          |
|      | TYDEN          | 0 – ;                            |                 | •          |
|      |                | 1 –                              |                 |            |

# 18 Внешняя системная шина MDR\_EBC (кроме 1986ВЕ94Т)

Таблица 144 – Адресные диапазоны внешней системной шины

| Адресный диапазон | Размер |        | Описание                |
|-------------------|--------|--------|-------------------------|
| 0x1000 0000 -     | 256    |        | CODE                    |
| 0x1FFF FFFF       |        |        | I Code D code .         |
| _                 |        |        |                         |
|                   |        |        |                         |
| 0x3000 0000 -     | 256    |        | DATA                    |
| 0x3FFF FFFF       |        |        | S Bus.                  |
| _                 |        | DMA    |                         |
| 0x5000_0000 -     | 2,256  |        | PERIPHERAL EXTERNAL BUS |
| 0xDFFF_FFFF       |        |        |                         |
| _                 |        | S Bus. | DMA                     |

# 18.1 Работа с внешними статическими ОЗУ, ПЗУ и периферийными устройствами

EXT\_BUS\_CONROL. RAM

ROM

WAIT\_STATE[3:0].

ADDR, DATA OE, WE, BE[3:0]

CLOCK.

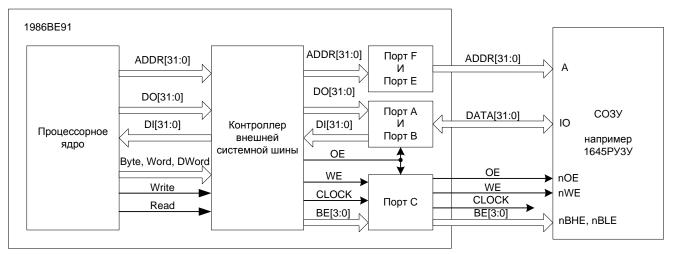



Рисунок 33. Обмен по внешней системной шине

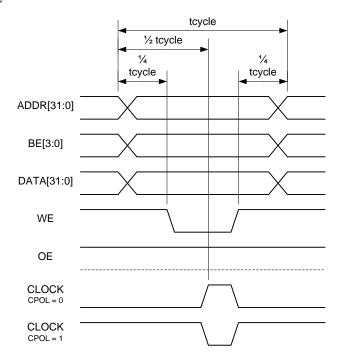



Рисунок 34. Диаграмма записи

tcycle WAIT\_STATE[3:0]. WE, OE, BE[3:0] . CLOCK

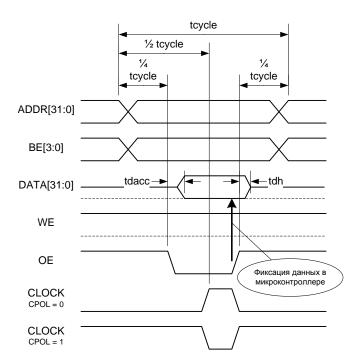



Рисунок 35. Диаграмма чтения

tcycle, . tdh

Таблица 145. Длительность фаз обращения в тактах процессора

| WAIT_STATE | Предустановка адреса<br>и данных перед<br>сигналом WE или OE | Длительность<br>WE или OE | Удержание адреса и<br>данных после сигнала<br>WE или OE |
|------------|--------------------------------------------------------------|---------------------------|---------------------------------------------------------|
| 0          | 1                                                            | 1                         | 0                                                       |
| 1          | 1                                                            | 1                         | 1                                                       |
| 2          | 1                                                            | 1                         | 1                                                       |
| 3          | 1                                                            | 2                         | 1                                                       |
| 4          | 2                                                            | 2                         | 1                                                       |
| 5          | 2                                                            | 3                         | 1                                                       |
| 6          | 2                                                            | 3                         | 2                                                       |
| 7          | 2                                                            | 4                         | 2                                                       |
| 8          | 3                                                            | 4                         | 2                                                       |
| 9          | 3                                                            | 5                         | 2                                                       |
| 10         | 3                                                            | 5                         | 3                                                       |
| 11         | 3                                                            | 6                         | 3                                                       |
| 12         | 4                                                            | 6                         | 3                                                       |
| 13         | 4                                                            | 7                         | 3                                                       |
| 14         | 4                                                            | 7                         | 4                                                       |
| 15         | 4                                                            | 8                         | 4                                                       |

#### 18.2 Работа с внешней NAND Flash-памятью

NAND Flash EXT\_BUS\_CONROL.

NAND NAND Flash

NAND Flash- NAND\_CYCLES.

, NAND Flash

DATA[7:0], ALE, CLE, BUSY1 BUSY2.

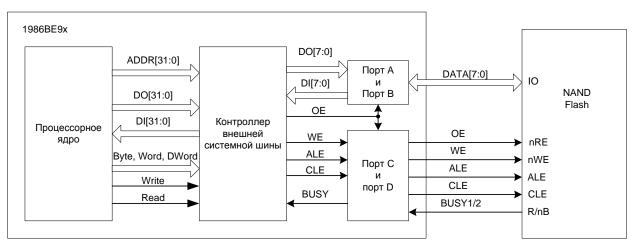



Рисунок 36. Подключение внешней NAND Flash

BUSY1 BUSY2
NAND Flash.

BUSY.

BUSY
D (BUSY1 –

PD2 ( ) BUSY2 – PD15 ( )).

NAND Flash
, ( 146).

Таблица 146 – Формат кодирования адреса обращения

| Адрес обращения | Фаза команды    | Фаза данных |  |  |  |
|-----------------|-----------------|-------------|--|--|--|
| ADDR[31:24]     | ,               |             |  |  |  |
|                 |                 | :           |  |  |  |
|                 |                 | l00x1F      |  |  |  |
|                 |                 | 300x3F      |  |  |  |
|                 |                 | 500xCF      |  |  |  |
| ADDR[23:21]     | ADR_CYCLES[2:0] | A[23:22]    |  |  |  |
|                 | 000 - 0         | A[21]       |  |  |  |
|                 | 001 - 1         |             |  |  |  |
|                 | •••             |             |  |  |  |
|                 | 111 – 7         | ,           |  |  |  |
|                 |                 | ,           |  |  |  |
|                 |                 |             |  |  |  |
|                 |                 |             |  |  |  |

#### Спецификация микросхем серии 1986ВЕ9ху, К1986ВЕ9ху, К1986ВЕ9хуК, К1986ВЕ92QI, К1986ВЕ92QC, 1986ВЕ91Н4, К1986ВЕ91Н4, 1986ВЕ94Н4, К1986ВЕ94Н4

| Адрес обращения | Фаза команды             | Фаза данных |
|-----------------|--------------------------|-------------|
| ADDR[20]        |                          | :           |
|                 | 0 – ;                    |             |
|                 | 1 –                      |             |
| ADDR[19]        | 0                        | 1           |
| ADDR[18:11]     |                          |             |
|                 | ECMD[7:0]                |             |
|                 | 0x10/0x11 - Page Program |             |
|                 | 0xD0 - Block Erase       |             |
| ADDR[10:3]      |                          |             |
|                 | SCMD[7:0]                |             |
|                 | 0x00/0x01 - Read1        |             |
|                 | 0x50 — Read2             |             |
|                 | 0x90 — Read ID           |             |
|                 | 0xFF — Reset             |             |
|                 | 0x80 — Page Program      |             |
|                 | 0x60 — Block Erase       |             |
|                 | 0x70 — Read Status       |             |
| ADDR[2:0]       |                          |             |

NAND Flash-

NAND Flash-

```
// -----
// Инициализация контроллера внешней системной шины для работы с NAND Flash
NAND CYCLES = 0 \times 02A63466;
// время t rr = 2 цикла HCLK или 20 нс при частоте HCLK 100 МГц
// время t<sup>-</sup>alea = 10 циклов
// время t whr = 6 циклов
// время t^{-} wp = 3 цикла
// время t_{rea} = 4 цикла
// время t_wc = 6 циклов // время t_rc = 6 циклов
EXT BUS CONTROL = 0 \times 000000004;
//\overline{NAND} = 1;
// Чтение ID микросхемы
// -----
unsigned char IDH;
unsigned char IDL;
// Фаза команды
*((volatile unsigned char *) (0x77200480)) = 0x00;
// ADR CYCLE = 1
// SCM\overline{D} = 0x90 (READ)
// Address 1 cycle = 0x00
// Фаза данных 
IDL = *((volatile unsigned char *)(0x77080000));
IDH = *((volatile unsigned char *)(0x77080000));
```

```
// -----
// Стирание блока памяти
// Фаза команды
*((volatile unsigned char *)(0x70768300))=0x11;
*((volatile unsigned char *)(0x70768301))=0x22;
*((volatile unsigned char *)(0x70768302))=0x33;
// ADR_CYCLE = 3
// выполнять завершающую команду
// ECMD= 0xD0
// SCMD = 0x60
// Address 1 cycle = 0x11
// Address 2 cycle = 0x22
// Address 1 cycle = 0x33
while (EXT BUS CONTROL!=0x080 ) {};
// Ждем R\sqrt{n}В
// Фаза команды
*((volatile unsigned char *)(0x70000380+addon))=0x00;
// ADR_CYCLE = 0 // SCMD = 0x70
// Фаза данных
IDL = *((volatile unsigned char *)(0x77080000));
If (IDL & 0x01==0x01) Error ();
// Если бит IOO==1, то стирание не выполнено
// Запись страницы
// ========
// Фаза команды
*((volatile unsigned char *)(0x70800400))=0x11;
*((volatile unsigned char *)(0x70800400))=0x22;
*((volatile unsigned char *)(0x70800400))=0x33;
*((volatile unsigned char *)(0x70800400))=0x44;
// ADR CYCLE = 4 // SCMD = 0x80
// Фаза данных
*((volatile unsigned char *)(0x70088000+addon))=0xBB;
*((volatile unsigned char *)(0x70088000+addon))=0xCC;
*((volatile unsigned char *)(0x70088000+addon))=0xDD;
// не выполнять завершающую команду // ECMD=\ 0x10
*((volatile unsigned char *)(0x70188000+addon))=0xEE;
// не выполнять завершающую команду
// ECMD= 0x10
// Данные 0 - 0xBB, 1 - 0xCC,... N - 0xEE
// N от 1 до 528
while (EXT BUS CONTROL!=0x080 ) {};
// Ждем R\sqrt{n}В
// Фаза команды
*((volatile unsigned char *)(0x70000380+addon))=0x00;
// ADR CYCLE = 0
//SCM\overline{D} = 0x70
// Фаза данных
IDL = *((volatile unsigned char *)(0x77080000));
If (IDL & 0x01==0x01) Error ();
// Если бит IOO==1, то запись не выполнена
// Чтение страницы
// ========
```

```
// Фаза команды
*((volatile unsigned char *)(0x70800000))=0x11;
*((volatile unsigned char *)(0x70800000))=0x22;
*((volatile unsigned char *)(0x70800000))=0x33;
*((volatile unsigned char *)(0x70800000))=0x44;
// ADR CYCLE = 4
// SCMD = 0x00
while (EXT BUS CONTROL!=0x080 ) {};
// Ждем R/nB

// Фаза данных
IDL=*((volatile unsigned char *)(0x70080000));
IDH=*((volatile unsigned char *)(0x70080000));
If (IDL != 0xBB || IDH != 0xCC) Error ();
// Если считали не то, что записали, то ошибка
```

## 18.3 Описание регистров блока контроллера внешней системной шины

Таблица 147 – Описание регистров блока контроллера внешней системной шины

| TE V.1        | TT          |                      |
|---------------|-------------|----------------------|
| Базовый Адрес | Название    | Описание             |
| 0x400F_0000   | MDR_EBC     |                      |
| Смещение      |             |                      |
| 0x50          | NAND_CYCLES | MDR_EBC->NAND_CYCLES |
|               |             | NAND_Flash           |
| 0x54          | CONTROL     | MDR_EBC->CONTROL     |
|               |             |                      |

#### 18.3.1 MDR\_EBC->CONTROL

#### Таблица 148 – Регистр CONTROL

| Номер  | 3116 | 15  | 14    | 13    | 12   | 118 | 7    | 64 | 3    | 2    | 1   | 0   |
|--------|------|-----|-------|-------|------|-----|------|----|------|------|-----|-----|
| Доступ | U    | R/W | R/W   | R/W   | R/W  | U   | RO   | U  | R/W  | R/W  | R/W | R/W |
| Cpoc   | 0    | 0   | 0     | 0     | 0    | 0   | 1    | 0  | 0    | 0    | 0   | 0   |
|        | -    | WA  | IT_ST | TATE[ | 3:0] | -   | BUSY | -  | CPOL | NAND | RAM | ROM |

#### Таблица 149 – Описание бит регистра CONTROL

| No   | Функциональное | Расшифровка функционального имени бита, краткое |  |  |  |  |
|------|----------------|-------------------------------------------------|--|--|--|--|
| бита | имя бита       | описание назначения и принимаемых значений      |  |  |  |  |
| 3116 | -              |                                                 |  |  |  |  |
| 1512 | WAIT           | AHB,                                            |  |  |  |  |
|      | STATE[3:0]     | / . OE/WE                                       |  |  |  |  |
|      |                | ½ WAIT_STATE,                                   |  |  |  |  |
|      |                | ¾ WAIT_STATE:                                   |  |  |  |  |
|      |                | 0000 – 3 HCLK                                   |  |  |  |  |
|      |                | 0001 – 4 HCLK                                   |  |  |  |  |
|      |                |                                                 |  |  |  |  |
|      |                | 1111 – 17 HCLK                                  |  |  |  |  |
| 118  | -              |                                                 |  |  |  |  |
| 7    | BUSY           | NAND Flash- :                                   |  |  |  |  |
|      |                | 1 – ;                                           |  |  |  |  |
|      |                | 0 –                                             |  |  |  |  |
| 64   | -              |                                                 |  |  |  |  |
| 3    | CPOL           | CLOCK:                                          |  |  |  |  |
|      |                | 0 – ;                                           |  |  |  |  |
|      |                | 1 –                                             |  |  |  |  |
| 2    | NAND           | NAND:                                           |  |  |  |  |
|      |                | 1 – NAND;                                       |  |  |  |  |
|      |                | 0 – NAND .                                      |  |  |  |  |
|      |                | 3 0                                             |  |  |  |  |
|      |                | 30                                              |  |  |  |  |
| 1    | RAM            | RAM:                                            |  |  |  |  |
|      | 24 41/4        | 1 – RAM;                                        |  |  |  |  |
|      |                | 0-RAM                                           |  |  |  |  |
| 0    | ROM            | ROM:                                            |  |  |  |  |
|      | KOWI           | 1 – ROM;                                        |  |  |  |  |
|      |                | 0 - ROM                                         |  |  |  |  |
|      |                | O - IVOIVI                                      |  |  |  |  |

#### 18.3.2 MDR\_EBC->NAND\_CYCLES

#### Таблица 150 – Регистр NAND\_CYCLES

| Номер  | 31-28 | 27-24 | 23-20  | 19-16 | 15-12 | 11-8  | 7-4  | 3-0  |
|--------|-------|-------|--------|-------|-------|-------|------|------|
| Доступ | U     | R/W   | R/W    | R/W   | R/W   | R/W   | R/W  | R/W  |
| Cpoc   |       | 0     | 0      | 0     | 0     | 0     | 0    | 0    |
|        | -     | t_rr  | t_alea | t_whr | t_wp  | t_rea | t_wc | t_rc |

#### Таблица 151 – Описание бит регистра NAND CYCLES

| N₂                 | Функциональное | Расшифровка функцион  | поли пого имени бите |     |
|--------------------|----------------|-----------------------|----------------------|-----|
| л <u>ч</u><br>бита | имя бита       |                       |                      | _   |
|                    | имя онта       | описание назначения и | принимаемых значен   | ии  |
| 3128               |                |                       |                      |     |
| 2724               | t_rr[3:0]      | busy                  | :                    |     |
|                    |                | 0000 - 0 HCLK         |                      |     |
|                    |                | 0001 – 1 HCLK         |                      |     |
|                    |                |                       |                      |     |
|                    |                | 1111 – 15 HCLK        |                      |     |
|                    |                |                       | NAND Flash           | 20  |
| 2320               | t_alea[3:0]    |                       | ID.                  |     |
|                    |                | t_rr.                 |                      |     |
|                    |                | _                     | NAND Flash           | 100 |
| 1916               | t_whr[3:0]     |                       | •                    |     |
|                    |                | t_rr.                 |                      |     |
|                    |                | _                     | NAND Flash           | 60  |
| 1512               | t_wp[3:0]      |                       |                      |     |
|                    | _ 11           | t_rr.                 |                      |     |
|                    |                | _                     | NAND Flash           | 25  |
| 118                | t_rea[3:0]     |                       |                      |     |
|                    | ,              | t_rr.                 |                      |     |
|                    |                | _                     | NAND Flash           | 35  |
| 74                 | t_wc[3:0]      |                       |                      |     |
|                    |                | t_rr.                 |                      |     |
|                    |                |                       | NAND Flash           | 60  |
| 30                 | t_rc[3:0]      |                       | _ 11 12 12 12 14011  |     |
| 20                 |                | t_rr.                 |                      |     |
|                    |                |                       | NAND Flash           | 60  |
| L                  |                |                       | _ 11 11 12 1 14611   |     |

# 19 Внешняя системная шина MDR\_EBC (для 1986ВЕ94Т)

Таблица 152 – Адресные диапазоны внешней системной шины

| Адресный диапазон | Размер |        | Описание                |
|-------------------|--------|--------|-------------------------|
| 0x1000 0000 -     | 256    |        | CODE                    |
| 0x1FFF_FFFF       |        |        | I Code D code .         |
|                   |        |        |                         |
| 0x3000_0000 -     | 256    |        | DATA                    |
| 0x3FFF_FFFF       |        |        | S Bus.                  |
| _                 |        | DMA    |                         |
| 0x5000 0000 -     | 256    |        | PERIPHERAL EXTERNAL BUS |
| 0x5FFF FFFF       |        |        |                         |
| _                 |        | S Bus. | DMA                     |
|                   |        |        |                         |
| 0x6000 0000 -     | 2      |        | PERIPHERAL EXTERNAL BUS |
| 0xDFFF FFFF       |        |        |                         |
| _                 |        | S Bus. | DMA                     |
|                   |        |        |                         |

4

## 19.1 Работа с внешними статическими ОЗУ, ПЗУ и периферийными устройствами

EXT\_BUS\_CONROL. RAM

**ROM** 

WAIT\_STATE[3:0] EXT\_BUS\_CTRL\_MODE=0

ENABLE=0 , WS\_ACTIVE[6:0], WS\_SETUP[2:0]

WS\_HOLD[2:0] EXT\_BUS\_CTRL\_MODE=1 ENABLE=1

ADDR, DATA

OE, WE, BE[3:0] CLOCK. CLOCK

EXT\_BUS\_CTRL\_MODE=0

EXT\_BUS\_CTRL\_MODE=1 CLOCKOUT\_EN=1.

CLOCK CPOL.

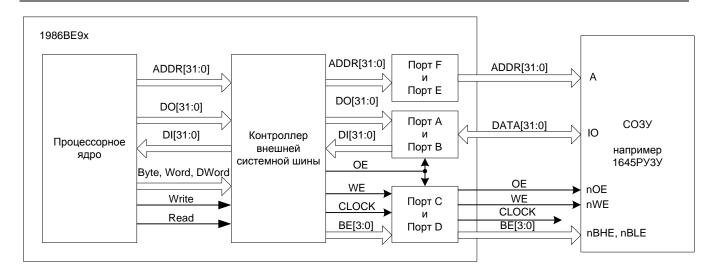



Рисунок 37. Обмен по внешней системной шине при задании длительности через биты WAIT\_STATE

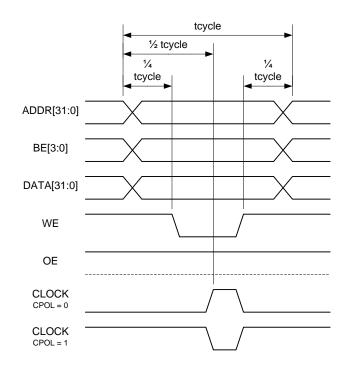



Рисунок 38. Диаграмма записи

tcycle WAIT\_STATE[3:0].
WE, OE, BE[3:0] . CLOCK

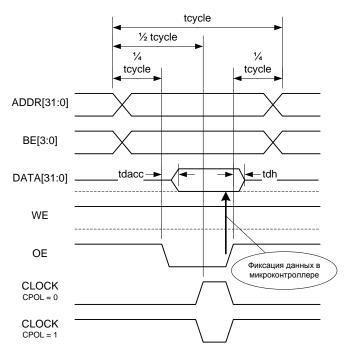



Рисунок 39. Диаграмма чтения

tcycle, . tdh

Таблица 153 – Длительность фаз обращения в тактах процессора при EXT\_BUS\_CTRL\_MODE=0 или ENABLE=0 для соответствующего региона

| WAIT_STATE | Предустановка адреса<br>и данных перед<br>сигналом WE или OE | Длительность<br>WE или OE | Удержание адреса и<br>данных после сигнала<br>WE или OE |
|------------|--------------------------------------------------------------|---------------------------|---------------------------------------------------------|
| 0          | 1                                                            | 1                         | 0                                                       |
| 1          | 1                                                            | 1                         | 1                                                       |
| 2          | 1                                                            | 1                         | 1                                                       |
| 3          | 1                                                            | 2                         | 1                                                       |
| 4          | 2                                                            | 2                         | 1                                                       |
| 5          | 2                                                            | 3                         | 1                                                       |
| 6          | 2                                                            | 3                         | 2                                                       |
| 7          | 2                                                            | 4                         | 2                                                       |
| 8          | 3                                                            | 4                         | 2                                                       |
| 9          | 3                                                            | 5                         | 2                                                       |
| 10         | 3                                                            | 5                         | 3                                                       |
| 11         | 3                                                            | 6                         | 3                                                       |
| 12         | 4                                                            | 6                         | 3                                                       |
| 13         | 4                                                            | 7                         | 3                                                       |
| 14         | 4                                                            | 7                         | 4                                                       |
| 15         | 4                                                            | 8                         | 4                                                       |

## 19.1.1 Обмен по внешней системной шине при задании длительности через WS\_ACTIVE, WS\_SETUP, WS\_HOLD

#### 19.2 Работа с внешней NAND Flash-памятью

NAND Flash EXT\_BUS\_CONROL.

NAND NAND Flash

NAND Flash- NAND\_CYCLES.

, NAND Flash DATA[7:0], ALE, CLE, BUSY1 BUSY2.

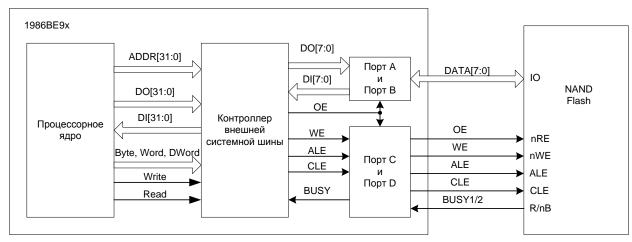



Рисунок 40. Подключение внешней NAND Flash

|      | BUSY1 BUSY<br>NAND Flash. | 2           |                    |
|------|---------------------------|-------------|--------------------|
|      | BUSY.                     |             | BUSY<br>D (BUSY1 – |
| PD2( | ) BUSY2 – PD15 (          | <b>)</b> ). | D (BUS11 -         |
|      | NAND Flash-               |             |                    |
| ,    | 1                         | 146         | •                  |

Таблица 154 – Формат кодирования адреса обращения

| Адрес обращения | Фаза команды             | Фаза данных |
|-----------------|--------------------------|-------------|
| ADDR[31:24]     | ,                        |             |
|                 |                          | :           |
|                 | 0x10                     |             |
|                 | 0x30                     |             |
| 17777100        | 0x50                     | .0xCF       |
| ADDR[23:21]     | ADR_CYCLES[2:0]          |             |
|                 | 000 – 0                  |             |
|                 | 001 - 1                  |             |
|                 | 111 – 7                  |             |
| ADDR[20]        | 111 – /                  |             |
| ADDR[20]        | 0 – :                    | •           |
|                 | 1 –                      |             |
| ADDR[19]        | 0                        | 1           |
| ADDR[18:11]     |                          |             |
|                 | ECMD[7:0]                |             |
|                 | 0x10/0x11 - Page Program |             |
|                 | 0xD0 - Block Erase       |             |
| ADDR[10:3]      |                          |             |
|                 | SCMD[7:0]                |             |
|                 | 0x00/0x01 - Read1        |             |
|                 | 0x50 — <b>Read2</b>      |             |
|                 | 0x90 — Read ID           |             |
|                 | Oxff — Reset             |             |
|                 | 0x80 — Page Program      |             |
|                 | 0x60 — Block Erase       |             |
|                 | 0x70 — Read Status       |             |
| ADDR[2:0]       |                          |             |

NAND Flash-

© АО «ПКК Миландр»

#### NAND Flash-

```
^{'}// Инициализация контроллера внешней системной шины для работы с NAND Flash
// -----
NAND CYCLES = 0x02A63466;
// время t_{rr} = 2 цикла HCLK или 20 нс при частоте HCLK 100 МГц
// время t_{alea} = 10 циклов
// время t_whr = 6 циклов 
// время t_wp = 3 цикла
// время t rea = 4 цикла
// время t_wc = 6 циклов
// время t<sup>-</sup>rc = 6 циклов
EXT_BUS_CONTROL = 0x00000004;
// \overline{NAND} = 1;
// Чтение ID микросхемы
// ========
unsigned char IDH;
unsigned char IDL;
// Фаза команды
*((volatile unsigned char *) (0x77200480)) = 0x00;
// ADR_CYCLE = 1
// SCMD = 0x90 (READ)
// Address 1 cycle = 0x00
// Фаза данных
IDL = *((volatile unsigned char *)(0x77080000));
IDH = *((volatile unsigned char *)(0x77080000));
// Стирание блока памяти
// Фаза команды
*((volatile unsigned char *)(0x70768300))=0x11;
*((volatile unsigned char *)(0x70768301))=0x22;
*((volatile unsigned char *)(0x70768302))=0x33;
// ADR CYCLE = 3
// выполнять завершающую команду
// ECMD= 0xD0
// SCMD = 0x60
// Address 1 cycle = 0x11
// Address 2 cycle = 0x22
// Address 1 cycle = 0x33
while (EXT BUS_CONTROL!=0x080 ) {};
// Жлем R/\overline{n}B
// Фаза команды
*((volatile unsigned char *)(0x70000380+addon))=0x00;
// ADR CYCLE = 0 // SCMD = 0x70
// Фаза данных
IDL = *((volatile unsigned char *)(0x77080000));
If (IDL & 0x01==0x01) Error ();
// Если бит I00 == 1, то стирание не выполнено
// Запись страницы
// =======
// Фаза команды
*((volatile unsigned char *)(0x70800400))=0x11;
*((volatile unsigned char *)(0x70800400))=0x22;
*((volatile unsigned char *)(0x70800400))=0x33;
*((volatile unsigned char *)(0x70800400))=0x44;
// ADR_CYCLE = 4
// SCMD = 0x80
```

```
// Фаза данных
*((volatile unsigned char *)(0x70088000+addon))=0xBB;
*((volatile unsigned char *)(0x70088000+addon))=0xCC;
*((volatile unsigned char *)(0x70088000+addon))=0xDD;
// не выполнять завершающую команду // ECMD=\ 0x10
*((volatile unsigned char *)(0x70188000+addon))=0xEE;
// не выполнять завершающую команду
// ECMD= 0x10
// Данные 0 - 0xBB, 1 - 0xCC,... N - 0xEE
// N от 1 до 528
while (EXT BUS CONTROL!=0x080 ) {};
// Ждем R/nB
// Фаза команды
*((volatile unsigned char *)(0x70000380+addon))=0x00;
// ADR CYCLE = 0
// SCM\overline{D} = 0x70
// Фаза данных
IDL = *((volatile unsigned char *)(0x77080000));
If (IDL & 0x01==0x01) Error ();
// Ёсли бит IOO==1, то запись не выполнена
// Чтение страницы
// ======
// Фаза команды
*((volatile unsigned char *)(0x70800000))=0x11;
*((volatile unsigned char *)(0x70800000))=0x22;
*((volatile unsigned char *)(0x70800000))=0x33;
*((volatile unsigned char *)(0x70800000))=0x44;
// ADR_CYCLE = 4
// SCMD = 0x00
while (EXT BUS CONTROL!=0x080 ) {};
// Ждем R/nB
// Фаза данных
IDL=*((volatile unsigned char *)(0x70080000));
IDH=*((volatile unsigned char *)(0x70080000));
If (IDL != 0xBB || IDH != 0xCC) Error ();
// Если считали не то, что записали, то ошибка
```

## 19.3 Описание регистров блока контроллера внешней системной шины

Таблица 155 – Описание регистров блока контроллера внешней системной шины

| Tuomiqui zee omieume pernerpoz onom nomiposmepu znemnen enereismen zminz |             |                      |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|-------------|----------------------|--|--|--|--|--|--|--|
| Базовый Адрес                                                            | Название    | Описание             |  |  |  |  |  |  |  |
| 0x400F_0000                                                              | MDR_EBC     |                      |  |  |  |  |  |  |  |
| Смещение                                                                 |             |                      |  |  |  |  |  |  |  |
| 0x50                                                                     | NAND_CYCLES | MDR_EBC->NAND_CYCLES |  |  |  |  |  |  |  |
|                                                                          |             | NAND_Flash           |  |  |  |  |  |  |  |
| 0x54                                                                     | CONTROL     | MDR_EBC->CONTROL     |  |  |  |  |  |  |  |
|                                                                          |             |                      |  |  |  |  |  |  |  |
| 0x58                                                                     | REG0_CNTRL  | MDR_EBC->REG0_CNTRL  |  |  |  |  |  |  |  |
|                                                                          |             | 0                    |  |  |  |  |  |  |  |
| 0x5C                                                                     | REG1_CNTRL  | MDR_EBC->REG1_CNTRL  |  |  |  |  |  |  |  |
|                                                                          |             | 1                    |  |  |  |  |  |  |  |
| 0x60                                                                     | REG2_CNTRL  | MDR_EBC->REG2_CNTRL  |  |  |  |  |  |  |  |
|                                                                          |             | 2                    |  |  |  |  |  |  |  |
| 0x64                                                                     | REG3_CNTRL  | MDR_EBC->REG3_CNTRL  |  |  |  |  |  |  |  |
|                                                                          |             | 3                    |  |  |  |  |  |  |  |

#### 19.3.1 MDR\_EBC->CONTROL

|   | 156 | 157 | 1986 | 91, 986 | 92 | 986 | 93: | 1986 | 94, |
|---|-----|-----|------|---------|----|-----|-----|------|-----|
| _ |     | _   |      |         |    | ;   |     |      |     |
| _ |     | _   |      |         |    |     |     |      |     |

## Таблица 156 – Регистр CONTROL

| Номер  | 3118 | 17     | 16     | 1512                | 11        | 110       | 9                      | 8           | 7    | 6     | 5    | 4      | 3    | 2    | 1   | 0   |
|--------|------|--------|--------|---------------------|-----------|-----------|------------------------|-------------|------|-------|------|--------|------|------|-----|-----|
| Доступ | U    | R/W    | R/W    | R/W                 | R/W       | R/W       | R/W                    | R/W         | R/W  | R/W   | R/W  | R/W    | R/W  | R/W  | R/W | R/W |
| Cpoc   | 0    | 0      | 0      | 0                   | 0         | 0         | 0                      | 0           | 0    | 0     | 1    | 0      | 0    | 0    | 0   | 0   |
|        | -    | FF_RDY | FS_RDY | WAIT_STATE<br>[3:0] | EN_FF_RDY | EN_FS_RDY | EXT_BUS_<br>CNTRL_MODE | CLOCKOUT_EN | BUSY | LOW16 | FOW8 | ENDIAN | CPOL | NAND | RAM | ROM |

#### Таблица 157 – Описание бит регистра CONTROL

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |          |           |              |  |  |  |  |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|----------|-----------|--------------|--|--|--|--|--|
| 3116      | -                       |                                                                                            |          |           |              |  |  |  |  |  |
| 17        | FF_RDY                  |                                                                                            |          |           |              |  |  |  |  |  |
|           |                         | READY                                                                                      |          | (         | 1)           |  |  |  |  |  |
|           |                         | 0 –                                                                                        |          |           | ·            |  |  |  |  |  |
|           |                         | 1 –                                                                                        |          |           |              |  |  |  |  |  |
| 16        | FS_RDY                  |                                                                                            |          |           |              |  |  |  |  |  |
|           |                         | READY                                                                                      |          | (         | 1)           |  |  |  |  |  |
|           |                         | 0 –                                                                                        |          |           |              |  |  |  |  |  |
|           |                         | 1 –                                                                                        |          |           |              |  |  |  |  |  |
| 1512      | WAIT                    |                                                                                            |          | AHB,      |              |  |  |  |  |  |
|           | STATE[3:0]              | /                                                                                          |          | OE/WE     |              |  |  |  |  |  |
|           |                         |                                                                                            | T_STATE, |           | 3/4          |  |  |  |  |  |
|           |                         | WAIT_STATE:                                                                                |          |           |              |  |  |  |  |  |
|           |                         | 0000 - 3                                                                                   |          |           |              |  |  |  |  |  |
|           |                         | 0001 - 4                                                                                   | HCLK     |           |              |  |  |  |  |  |
|           |                         |                                                                                            |          |           |              |  |  |  |  |  |
|           |                         | 1111 – 17                                                                                  | HCLK     |           |              |  |  |  |  |  |
| 11        | EN_FF_RDY               |                                                                                            | _        |           | ,            |  |  |  |  |  |
|           |                         | READY                                                                                      | (        |           | (            |  |  |  |  |  |
|           |                         |                                                                                            | ,        |           | USE_READY=1) |  |  |  |  |  |
|           |                         | 0 –                                                                                        |          | BUS FAULT |              |  |  |  |  |  |
|           |                         | READY                                                                                      |          |           |              |  |  |  |  |  |
|           |                         | 1-                                                                                         | ŀ        | BUS FAULT |              |  |  |  |  |  |
|           |                         | READY                                                                                      |          |           |              |  |  |  |  |  |

| No   | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 10   | EN_FS_RDY      | DEADY.                                          |
|      |                | READY (                                         |
|      |                | , USE_READY=1)                                  |
|      |                | 0 – BUS FAULT                                   |
|      |                | READY 1 - BUS FAULT                             |
|      |                | READY                                           |
| 9    | EXT_BUS_MODE   | KL/ID1                                          |
|      | EMI_BOS_MODE   |                                                 |
|      |                | 0 – WAIT_STATE                                  |
|      |                | 1 – ENABLE=1,                                   |
|      |                | WS_ACTIVE,                                      |
|      |                | WS_SETUP, WS_HOLD                               |
| 8    | CLOCKOUT_EN    |                                                 |
|      |                | CLOCK                                           |
|      |                | 0 – WE                                          |
|      |                | OE.                                             |
| 7    | DUCV           | 1 - EXT_BUS_MODE=1  NAND Flash- :               |
| /    | BUSY           | NAND Flash-<br>1 — ;                            |
|      |                | 0 -                                             |
| 6    | LOW16          | 16                                              |
|      | 20 11 10       | PA[15:0]                                        |
|      |                | 0 –                                             |
|      |                | 1 – 16                                          |
|      |                | PA[15:0]                                        |
|      |                | / 8-                                            |
|      |                | / 16- ,                                         |
|      | LOWO           | / 32- ,<br>8                                    |
| 5    | LOW8           | PA[7:0]                                         |
|      |                | 0 –                                             |
|      |                | 1 – 8                                           |
|      |                | PA[7:0]                                         |
|      |                | / 16-                                           |
|      |                | / 8- ,                                          |
|      |                | / 32- ,                                         |
| 4    | ENDIAN         |                                                 |
| 3    | CPOL           | CLOCK:                                          |
|      |                | 0 — ;                                           |
|      | NIANID         | 1 -                                             |
| 2    | NAND           | NAND:                                           |
|      |                | 1 - NAND;<br>0 - NAND .                         |
|      |                | 3.0                                             |
|      |                | 50 ,                                            |
|      | I              |                                                 |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| №    | Функциональное | Расшифровка функционального имени бита, краткое |      |      |  |
|------|----------------|-------------------------------------------------|------|------|--|
| бита | имя бита       | описание назначения и принимаемых значений      |      |      |  |
| 1    | RAM            |                                                 |      | RAM: |  |
|      |                | 1 –                                             | RAM; |      |  |
|      |                | 0 - RAM                                         |      |      |  |
| 0    | ROM            |                                                 |      | ROM: |  |
|      |                | 1 –                                             | ROM; |      |  |
|      |                | 0 - ROM                                         |      |      |  |

# 19.3.2 MDR\_EBC->NAND\_CYCLES

# Таблица 158 – Регистр NAND\_CYCLES

| Номер  | 31-28 | 27-24 | 23-20  | 19-16 | 15-12 | 11-8  | 7-4  | 3-0  |
|--------|-------|-------|--------|-------|-------|-------|------|------|
| Доступ | U     | R/W   | R/W    | R/W   | R/W   | R/W   | R/W  | R/W  |
| Cpoc   |       | 0     | 0      | 0     | 0     | 0     | 0    | 0    |
|        | •     | t_rr  | t_alea | t_whr | t_wp  | t_rea | t_wc | t_rc |

# Таблица 159 – Описание бит регистра NAND\_CYCLES

| №    | Функциональное | Расшифровка функционального имени бита, краткое |                                            |     |  |  |
|------|----------------|-------------------------------------------------|--------------------------------------------|-----|--|--|
| бита | имя бита       | описание назначения и                           | описание назначения и принимаемых значений |     |  |  |
| 3128 |                |                                                 |                                            |     |  |  |
| 2724 | t_rr[3:0]      | busy                                            | :                                          |     |  |  |
|      |                | 0000 – 0 HCLK                                   |                                            |     |  |  |
|      |                | 0001 – 1 HCLK                                   |                                            |     |  |  |
|      |                |                                                 |                                            |     |  |  |
|      |                | 1111 – 15 HCLK                                  |                                            |     |  |  |
|      |                |                                                 | NAND Flash                                 | 20  |  |  |
| 2320 | t_alea[3:0]    |                                                 | ID.                                        |     |  |  |
|      |                | t_rr.                                           |                                            |     |  |  |
|      |                |                                                 | NAND Flash                                 | 100 |  |  |
| 1916 | t_whr[3:0]     |                                                 |                                            |     |  |  |
|      |                | t_rr.                                           |                                            |     |  |  |
|      |                |                                                 | NAND Flash                                 | 60  |  |  |
| 1512 | t_wp[3:0]      |                                                 |                                            |     |  |  |
|      |                | t_rr.                                           |                                            |     |  |  |
|      |                |                                                 | NAND Flash                                 | 25  |  |  |
| 118  | t_rea[3:0]     |                                                 |                                            |     |  |  |
|      |                | t_rr.                                           |                                            |     |  |  |
|      |                |                                                 | NAND Flash                                 | 35  |  |  |
| 74   | t_wc[3:0]      |                                                 |                                            |     |  |  |
|      |                | t_rr.                                           |                                            |     |  |  |
|      |                |                                                 | NAND Flash                                 | 60  |  |  |
| 30   | t_rc[3:0]      |                                                 |                                            |     |  |  |
|      |                | t_rr.                                           |                                            |     |  |  |
|      |                |                                                 | NAND Flash                                 | 60  |  |  |

# 19.3.3 MDR\_EBC->REGx\_CNTRL

1986 94,

1986 91, 986 92 986 93.

|   | 3115 | 14        | 1311    | 108      | 71        | 0      |
|---|------|-----------|---------|----------|-----------|--------|
|   | U    | R/W       | R/W     | R/W      | R/W       | R/W    |
| С |      | 0         | 010     | 010      | 100000    | 0      |
|   | -    | USE_READY | QTOH_SW | WS_SETUP | WS_ACTIVE | ENABLE |

| Nº   | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|------|-------------------------|--------------------------------------------------------------------------------------------|
| 3115 |                         |                                                                                            |
| 14   | USE_READY               | PC[0],                                                                                     |
|      |                         | 1 – 0 – READY                                                                              |
|      |                         | ACTIVE, READY - HOLD                                                                       |
|      |                         | , 256.<br>После этого обмен завершается в любом случае                                     |
| 1311 | WS_HOLD[2:0]            | nWE/nOE,                                                                                   |
|      |                         | 1 8                                                                                        |
| 108  | WS_SETUP[2:0]           | nWE/nOE                                                                                    |
|      |                         | 1 8                                                                                        |
| 71   | WS_ACTIVE[6:0]          | nWE/nOE                                                                                    |
|      |                         | / ,<br>1 128                                                                               |
| 0    | ENABLE                  |                                                                                            |
|      |                         | EXT_BUS_CNTRL_MODE = 1<br>1 -<br>0 -                                                       |

# 20 Контроллер интерфейса MDR\_USB

```
USB
                                                                    (Device)
                                                     USB 2.0.
                     (Host)
              USB
                                                                 Full Speed (12
    /) Low Speed (1.5
                          / ),
    (CRC), NRZI
                                            (Control),
                                                             (Bulk),
(Isochronous)
                                         (Interrupt),
                                                                USB Device
                                            USB Device
1-
     4-
FIFO
            64
                                            16
                   . USB Host
                                                                        USB
Host: FIFO
                 64
                                             SOF
    20.1
          Инициализация контроллера при включении
            USB.
                                                                ».
                           USB
                                                              HSE.
                                                                        USB
                       48
PLL_USB.
             2
                                    PLLUSBMUL
                                                       PLL_CONTROL.
                 16,
                                           2...16
48
      PLLRDY.
                                                 PLLUSBON.
                                            USB
                                             3
                                                     PER_CLOCK).
USB_CLOCK
                          USBCLKEN,
USBC1SEL USBC2SEL.
                                 PLLUSBON
PLLUSBMUL
                  PLL_CONTROL,
                                               USBPLL.
                                     USB
                                                     USB_HSCR.
                               RESET_CORE
                                10
                    USB (
                                                        ).
    20.2
          Задание параметров шины USB и события
          подключения/отключения
              USB
                                                 USB Host
                                                                  USB Device.
                         HOST_MODE
                                              HSCR (0 -
                                                             Device, 1 –
                                          USB
                                                                      EN_RX
Host).
 EN_TX
```

 $EN_RX=0.$ 

 $(EN_TX=0).$ 

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

Device SC.

SCFSR (0 – 1,5 / , 1 – 12 / ), SCFSP (0 – Low speed, 1 – Full speed)

Host HTXLC.

FSLR (0 – 1,5 / , 1 – 12 / ), FSPL (0 – Low speed, 1 – Full speed)

Host Host

CONEV USB\_HSI 1

# 20.3 Задание адреса и инициализация оконечных точек

, EPISOEN SEP[x].CTRL.

# 20.4 Транзакция IN (USB Device)

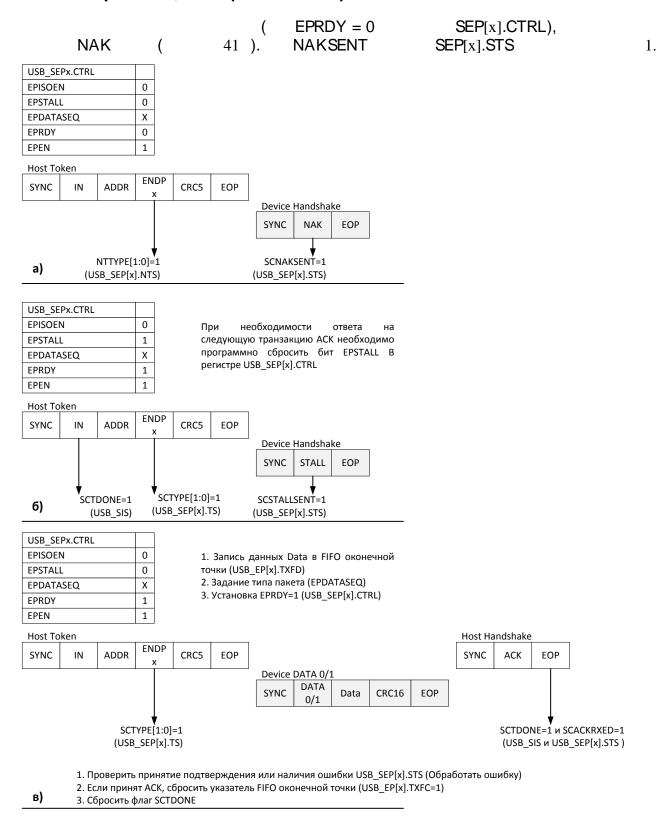



Рисунок 41. Транзакция IN (USB Device)

а – оконечная точка не готова;

**б** – установлен бит EPSTALL;

в – оконечная точка готова

```
EPSSTALL
                                                                   SEP[x].CTRL,
                    STALL
                                (
                                        41 ).
                                                  SCSTALLSENT
                                                                        SEP[x].STS
               1.
                                                  SCTTYPE[1:0]
                                                                         SEP[x].TS
                                       41 ),
                         1
                     FIFO
EP[x].TXFD
                                                    EP[x].TXFC
FIFO
                                                                  64
               0.
            64
                                                  FIFO.
                                                  FIFO.
                                                   ACK
                                                                    SCACKRXED
        SEP[x].STS
                                    1.
                                        SEP[x].CTRL,
                 EPDATASEQ
               DATA0, DATA1.
```

# 20.5 Транзакция SETUP/OUT (USB Device)

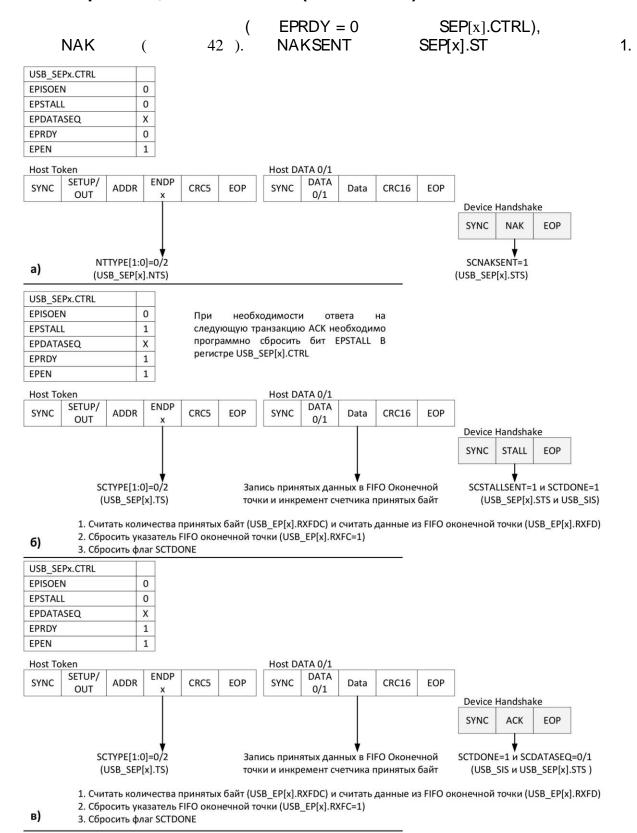



Рисунок 42. Транзакция SETUP/OUT (USB Device)

- а оконечная точка не готова;
- **б** установлен бит EPSTALL;
- в оконечная точка готова

```
EPSSTALL
                                                      SEP[x].CTRL,
                STALL
                         (
                                 42 ). SCSTALLSENT
                                                          SEP[x].STS
            1.
                                 42 )
                                                      SETUP,
SCTTYPE[1:0]
                   SEP[x].TS
                                                00
                                   OUT.
                                                SCTTYPE[1:0] = 2.
                         DATA0/DATA1
        FIFO
     EP[x].RXFD.
                                                   EP[x].RXFDC.
                                                FIFO
                                                                1
     EP[x].RXFC.
   20.6 Транзакция SETUP/OUT (USB Host)
                                               (
                                                    HTXA),
       HTXE)
                    token (
                                    HTXT).
     HTXFD.
                                        FIFO.
                                                 1 HTXFC
         64
       FIFO
                    0.
                   FIFO.
                                                       TREQ
HTXC. Host
                    Setup/Out
                            TDONE = 1 (
1. PID
                                            HSI).
      HRXP.
                       NAK ( 43 ), NAKRXED = 1 ( HRXS).
                                 43 ), STALLRXED = 1 (
                        STALL (
HRXS).
                      ACK ( 43 ), ACKRXED = 1 ( HRXS).
```

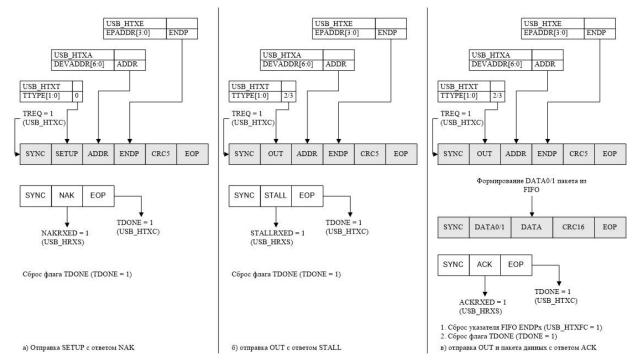



Рисунок 43 (а, б, в). Транзакция SETUP/OUT (USB Host)

# 20.7 Транзакция IN (USB Host)

```
HTXA),
                                               HTXT).
             HTXE)
                           token
             TREQ
                          HTXC. Host
                                              IN
                                  TDONE = 1 (
                                                     HSI).
                                             1. PID
       HRXP.
                           NAK (
                                        44),
                                                  NAKRXED = 1
                                                                       HRXS).
                             STALL (
                                            44 ),
                                                        STALLRXED = 1 (
HRXS).
                 DATA0/DATA1
                                             44 ),
          FIFO
                                                     HRXFD.
                            HRXFDC.
                       FIFO
                                          1
                                                   HRXFC.
                                                               DATASEQ
HRXS
                                        (0 - DATA0, 1 - DATA1).
```

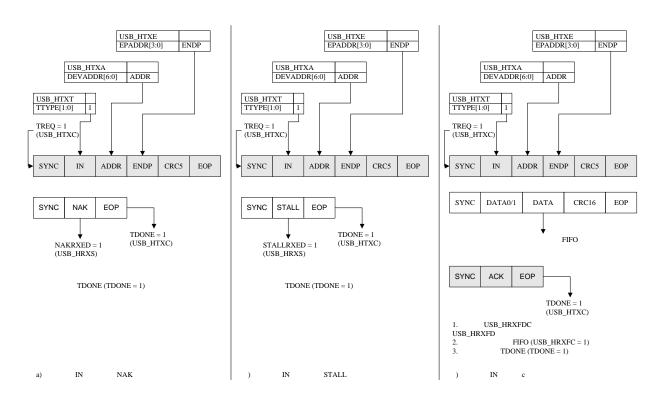
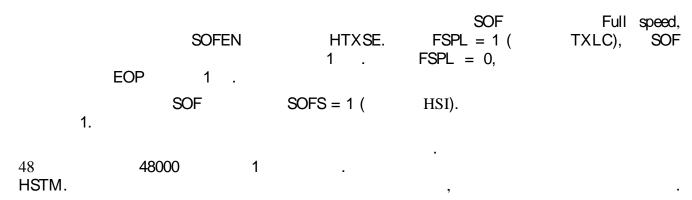




Рисунок 44 (а, б, в). Транзакция IN (USB Host)

# 20.8 Отправка SOF пакетов и отсчет времени (USB Host)



# 20.9 Описание регистров управление контроллером USB интерфейса

Таблица 160 – Описание регистров управление контроллером USB интерфейса

| Базовый Адрес | Название        | Описание |
|---------------|-----------------|----------|
| 0x4001 0000   | MDR_USB         | USB      |
| Смещение      |                 |          |
| 0x380         | MDR_USB->HSCR   | USB      |
| 0x384         | MDR_USB->HSVR   | USB      |
|               | Контроллер НОЅТ |          |
| 0x00          | MDR_USB->HTXC   |          |
| 0x04          | MDR_USB->HTXT   |          |
| 0x08          | MDR_USB->HTXLC  | USB      |
| 0x0C          | MDR_USB->HTXSE  | SOF      |
| 0x10          | MDR_USB->HTXA   |          |
| 0x14          | MDR_USB->HTXE   |          |
| 0x18          | MDR_USB->HFN_L  |          |
| 0x1C          | MDR_USB->HFN_H  | SOF      |
| 0x20          | MDR_USB->HSI    |          |
| 0x24          | MDR_USB->HIM    |          |
| 0x28          | MDR_USB->HRXS   |          |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| Базовый Адрес | Название                | Описание |
|---------------|-------------------------|----------|
| 0x2C          | MDR_USB->HRXP           | PID      |
| 0x30          | MDR_USB->HRXA           | ,        |
| 0x34          |                         |          |
| 0255 1        | MDR_USB->HRXE           |          |
| 0x38          | MDR_USB->HRXCS          |          |
| 0x3C          | MDR_USB->HSTM           |          |
| 0x80          | MDR_USB->HRXFD          |          |
| 0x88          | MDR_USB->HRXFDC_L       |          |
| 0x8C          | MDR_USB->HRXFDC_H       |          |
| 0x90          | MDR_USB->HRXFC          |          |
| 0xC0          | MDR USB->HTXFD          |          |
| 0xD0          | MDR_USB->HTXFC          |          |
|               | Контроллер SLAVE        |          |
| 0x100         | MDR_USB->SEP[x].CTRL    |          |
| 0x110         | WIER_COD > SEI [x].CIRE |          |
| 0x120         |                         |          |
| 0x130         |                         |          |
| 0x104         |                         |          |
| 0x114         | MDR_USB->SEP[x].STS     |          |
| 0x124         | WER_COD > SET [x].STS   |          |
| 0x134         |                         |          |
| 0x108         | MDR USB->SEP[x].TS      |          |
| 0x118         | WIER_COD > SEI [x].15   |          |
| 0x128         |                         |          |
| 0x138         |                         |          |
| 0x10C         | MDR_USB->SEP[x].NTS     | NAK      |
| 0x11C         |                         | 11111    |
| 0x12C         |                         |          |
| 0x13C         |                         |          |
| 0x140         |                         | SLAVE    |
|               | MDR_USB->SC             |          |
| 0x144         | MDR_USB->SC             | USB      |
|               | MIDK_USD->SLS           |          |
| 0x148         | MDR_USB->SIS            | SLAVE    |
| 0x14C         | MDR_USB->SIM            |          |
|               |                         | SLAVE    |
| 0x150         | MDR_USB->SA             |          |
| 0x154         | MDR_USB->SFN_L          |          |
| 0x158         | MDR_USB->SFN_H          |          |
| <u> </u>      |                         |          |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| Базовый Адрес | Название                | Описание |
|---------------|-------------------------|----------|
| 0x180         | MDR_USB->SEP[x].RXFD    |          |
| 0x200         |                         |          |
| 0x280         |                         |          |
| 0x300         |                         |          |
| 0x188         | MDR_USB->SEP[x].RXFDC_L |          |
| 0x18C         | MDR_USB->SEP[x].RXFDC_H |          |
| 0x208         |                         |          |
| 0x20C         |                         |          |
| 0x288         |                         |          |
| 0x28C         |                         |          |
| 0x308         |                         |          |
| 0x30C         |                         |          |
| 0x190         | MDR_USB->SEP[x].RXFC    |          |
| 0x210         |                         |          |
| 0x290         |                         |          |
| 0x310         |                         |          |
| 0x1C0         | MDR_USB->SEP[x].TXFD    |          |
| 0x240         |                         |          |
| 0x2C0         |                         |          |
| 0x340         |                         |          |
| 0x1D0         | MDR_USB->SEP[x].TXFDC   |          |
| 0x250         |                         |          |
| 0x2D0         |                         |          |
| 0x350         |                         |          |

## 20.9.1 MDR\_USB->HSCR

# Таблица 161 – Регистр HSCR

| Номер  | 318 | 7          | 6          | 5          | 4          | 3        | 2        | 1             | 0            |
|--------|-----|------------|------------|------------|------------|----------|----------|---------------|--------------|
| Доступ | U   | R/W        | R/W        | R/W        | R/W        | R/W      | R/W      | R/W           | R/W          |
| Сброс  | 0   | 0          | 0          | 0          | 0          | 0        | 0        | 0             | 0            |
|        |     |            |            |            |            |          |          |               |              |
|        |     | D-         | D-         | D+         | D+         | EN       | EN       | DECET         | ност         |
| _      | -   | D-<br>PULL | D-<br>PULL | D+<br>PULL | D+<br>PULL | EN<br>RX | EN<br>TX | RESET<br>CORE | HOST<br>MODE |

# Таблица 162 – Описание бит регистра HSCR

|      |              |          |             |       |          |     | регистра пъск  |
|------|--------------|----------|-------------|-------|----------|-----|----------------|
| №    | Функциональн |          |             |       |          |     | аткое описание |
| бита | ое имя бита  | назначен | ия и приним | аемых | значений |     |                |
| 318  | -            |          |             |       |          |     |                |
| 7    | D-           |          |             |       |          | D-: |                |
|      | PULLDOWN     | 0 —      |             | ;     |          |     |                |
|      |              | 1 –      |             |       |          |     |                |
| 6    | D-           |          |             |       |          | D-: |                |
|      | PULLUP       | 0 –      |             | ;     |          |     |                |
|      |              | 1 –      |             | ·     |          |     |                |
| 5    | D+           |          |             |       |          | D+: |                |
|      | PULLDOWN     | 0 –      |             | ;     |          |     |                |
|      |              | 1 –      |             | ŕ     |          |     |                |
| 4    | D+           |          |             |       |          | D+: |                |
|      | PULLUP       | 0 –      |             | ;     |          |     |                |
|      |              | 1 –      |             |       |          |     |                |
| 3    | EN_RX        |          |             |       | USB:     |     |                |
|      |              | 0 –      | ;           |       |          |     |                |
|      |              | 1 —      | •           |       |          |     |                |
|      |              |          |             |       |          |     |                |
| 2    | EN_TX        |          |             |       | USB:     |     |                |
|      |              | 0 –      | ;           |       |          |     |                |
|      |              | 1 –      | •           |       |          |     |                |
|      |              |          |             |       |          |     |                |
| 1    | RESET_CORE   |          |             |       | :        |     |                |
|      |              | 1 —      |             | (     |          | 10  |                |
|      |              | US       | BCLK);      | •     |          |     |                |
|      |              | 0 –      | ,,          |       |          |     |                |
| 0    | HOST_MODE    |          |             | :     |          |     |                |
|      | _            | 1 –      | HOST;       |       |          |     |                |
|      |              | 0 –      | Device      |       |          |     |                |
|      |              |          | =           |       |          |     |                |

## 20.9.2 MDR\_USB->HSVR

# Таблица 163 – Регистр HSVR

| Номер  | 318 | 74       | 30      |
|--------|-----|----------|---------|
| Доступ | U   | RO       | RO      |
| Сброс  | 0   | 0        | 0       |
|        | -   | REVISION | VERSION |

## Таблица 164 – Описание бит регистра HSVR

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|
| 318       | -                       |                                                                                            |
| 74        | REVISION                |                                                                                            |
| 30        | VERSION                 |                                                                                            |

## 20.9.3 Регистры HOST режима

#### 20.9.3.1 MDR\_USB->HTXC

## Таблица 165 – Регистр НТХС

| Номер  | 314 | 3     | 2     | 1    | 0    |
|--------|-----|-------|-------|------|------|
| Доступ | U   | R/W   | R/W   | R/W  | R/W  |
| Сброс  | 0   | 0     | 0     | 0    | 0    |
|        | -   | ISOEN | PREEN | SOFS | TREQ |

## Таблица 166 – Описание бит регистра НТХС

| №    | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений.     |
| 314  | -              |                                                 |
| 3    | ISOEN          | :                                               |
|      |                | 1 – , ACK                                       |
|      |                | . , TRANS_TYPE_REG                              |
|      |                | IN_TRANS OUTDATA0_TRANS.                        |
|      |                | ;                                               |
|      |                | 0 –                                             |
| 2    | PREEN          | :                                               |
|      |                | 1 – .                                           |
|      |                | host low speed .                                |
|      |                | _                                               |
|      |                | full speed                                      |
|      |                | FULL_SPEED_LINE_RATE_BIT.                       |
| 1    | SOFS           | SOF:                                            |
|      |                | 1 – SOF.                                        |
|      |                | SOF;                                            |
|      |                | 0 –                                             |
| 0    | TREQ           | :                                               |
|      |                | 1 – ,                                           |
|      |                | ;                                               |
|      |                | 0 –                                             |

#### 20.9.3.2 MDR\_USB->HTXT

## Таблица 167 – Регистр НТХТ

| Сброс  | 0   | 0   | 0   |
|--------|-----|-----|-----|
| Доступ | U   | R/W | R/W |
| Номер  | 312 | 1   | 0   |

#### Таблица 168 – Описание бит регистра НТХТ

| Nº   | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 312  | -              |                                                 |
| 10   | TTYPE          | :                                               |
|      |                | 00 – setup_trans                                |
|      |                | 01 – in_trans                                   |
|      |                | 10 – outdata0_trans                             |
|      |                | 01 – outdata1_trans                             |

#### 20.9.3.3 MDR\_USB->HTXLC

## Таблица 169 – Регистр HTXLC

| Номер  | 315 | 4    | 3    | 2   | 1   | 0      |
|--------|-----|------|------|-----|-----|--------|
| Доступ | U   | R/W  | R/W  | R/W | R/W | R/W    |
| Сброс  | 0   | 0    | 0    | 0   | 0   | 0      |
|        | -   | FSLR | FSLP | DC  | TXL | S[1:0] |

# Таблица 170 – Описание бит регистра HTXLC

|      |              |                | 1 douniqu 170         | Onneamne of    | ni pernerpa iii Alee |
|------|--------------|----------------|-----------------------|----------------|----------------------|
| №    | Функциональн | Расшифровка с  | <b>р</b> ункционально | ого имени бита | а, краткое описание  |
| бита | ое имя бита  | назначения и п | ринимаемых зн         | начений        |                      |
| 315  | -            |                |                       |                |                      |
| 4    | FSLR         | 1-12 /         |                       |                |                      |
|      |              | 0-1,5          |                       |                |                      |
| 3    | FSPL         | 1 – FULL SPEEI | )                     | USB.           |                      |
|      |              | 0 – LOW SPEED  | )                     | USB.           |                      |
|      |              |                |                       |                |                      |
|      |              | host           | full speed            | , fu           | II speed             |
|      |              |                |                       |                | low speed            |
|      |              |                | ,                     |                | low speed            |
|      |              | ,              |                       | low speed      | ,                    |
|      |              |                | full speed            | •              |                      |
| 2    | DC           |                |                       | USB:           |                      |
|      |              | 1 -            |                       |                | USB                  |
|      |              | . ,            |                       |                |                      |
|      |              | 0 –            |                       |                |                      |
| 10   | TXLC[1:0]    |                | DIRECT_C              | CONTROL_BIT    | ,                    |
|      |              |                | USB:                  |                |                      |
|      |              | TXL [0] = D    | -                     |                |                      |
|      |              | TXLC[1] = D    |                       |                |                      |

#### 20.9.3.4 MDR\_USB->HTXSE

#### Таблица 171 – Регистр HTXSE

|       |     | - |
|-------|-----|---|
| Номер | 311 | 0 |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| Доступ | U | R/W   |
|--------|---|-------|
| Сброс  | 0 | 0     |
|        | - | SOFEN |

#### Таблица 172 – Описание бит регистра HTXSE

| <b>№</b><br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |       |       |            |     |
|------------------|-------------------------|--------------------------------------------------------------------------------------------|-------|-------|------------|-----|
| 311              | -                       |                                                                                            |       |       |            |     |
| 0                | SOFEN                   | 1 - FSPL                                                                                   |       | , SOF |            |     |
|                  |                         | 1                                                                                          | . SOF |       | full speed |     |
|                  |                         | I                                                                                          | FSPL. | FSPL  | ,          |     |
|                  |                         |                                                                                            | EOP   | 1 .   |            | low |
|                  |                         | speed                                                                                      |       | (     | ).         |     |
|                  |                         | 0 –                                                                                        |       | •     | SOF/EOP    |     |
|                  |                         |                                                                                            |       |       | suspend    |     |

#### 20.9.3.5 MDR\_USB->HTXA

#### Таблица 173 – Регистр НТХА

| Номер  | 317 | 60           |
|--------|-----|--------------|
| Доступ | U   | R/W          |
| Сброс  | 0   | 0            |
|        | -   | DEVADDR[6:0] |

#### Таблица 174 – Описание бит регистра НТХА

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|
| 317       | -                       |                                                                                            |
| 60        | DEVADDR[6:0]            | USB Device address.                                                                        |

#### 20.9.3.6 MDR\_USB->HTXE

#### Таблица 175 – Регистр НТХЕ

| Номер  | 314 | 30          |
|--------|-----|-------------|
| Доступ | U   | R/W         |
| Сброс  | 0   | 0           |
|        | •   | EPADDR[3:0] |

## Таблица 176 – Описание бит регистра НТХЕ

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|
| 314       | -                       |                                                                                            |
| 30        | EPADDR[3:0]             | Endpoint address.                                                                          |

#### 20.9.3.7 MDR\_USB->HFN

## Таблица 177 – Регистр HFN

| Номер  | 3111 | 100        |
|--------|------|------------|
| Доступ | U    | R/W        |
| Сброс  | 0    | 0          |
|        | -    | FNUM[10:0] |

# Таблица 178 – Описание бит регистра HFN

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|
| 3111      | -                       | -                                                                                          |
| 100       | FNUM[10:0]              |                                                                                            |

#### 20.9.3.8 MDR\_USB->HSI

# Таблица 179 – Регистр HSI

| Номер  | 314 | 3    | 2     | 1      | 0     |
|--------|-----|------|-------|--------|-------|
| Доступ | U   | R/W  | R/W   | R/W    | R/W   |
| Сброс  | 0   | 0    | 0     | 0      | 0     |
|        | -   | SOFS | CONEV | RESUME | TDONE |

# Таблица 180 - Описание бит регистра HSI

|      | T              |                      | uominu 100 O   |              | 1 1           |
|------|----------------|----------------------|----------------|--------------|---------------|
| No   | Функциональное | Расшифровка функцио  | онального имен | и бита, крат | гкое описание |
| бита | имя бита       | назначения и принима | емых значений  | i.           |               |
| 314  | -              |                      |                |              |               |
| 3    | SOFS           | 1 –                  | ,              | SOF          |               |
|      |                |                      | 1.             |              |               |
|      |                | 0 - SOF              |                |              |               |
| 2    | CONEV          | 1 -                  | ,              |              |               |
|      |                |                      |                |              | 1.            |
|      |                | 0 —                  |                |              |               |
| 1    | RESUME         | 1 –                  | ,              |              |               |
|      |                |                      |                | 1.           |               |
|      |                | 0 – .                |                |              |               |
|      | TDONE          | 1 –                  | ,              |              |               |
|      |                |                      | 1.             |              |               |
|      |                | 0 –                  |                |              |               |

#### 20.9.3.9 MDR\_USB->HIM

# Таблица 181 – Регистр НІМ

| Номер  | 314 | 3      | 2       | 1        | 0       |
|--------|-----|--------|---------|----------|---------|
| Доступ | U   | R/W    | R/W     | R/W      | R/W     |
| Сброс  | 0   | 0      | 0       | 0        | 0       |
|        | -   | SOFSIE | CONEVIE | RESUMEIE | TDONEIE |

# Таблица 182 – Описание бит регистра НІМ

| №    | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 314  | -              |                                                 |
| 3    | SOFIE          | 1 – SOF.                                        |
|      |                | 0 –                                             |
| 2    | CONEVIE        | 1 –                                             |
|      |                |                                                 |
|      |                | 0 –                                             |
| 1    | RESUMEIE       | 1                                               |
|      |                | 0 –                                             |
| 0    | TDONEIE        | 1-                                              |
|      |                | 0 –                                             |

#### 20.9.3.10 MDR\_USB->HRXS

# Таблица 183 – Регистр HRXS

| Номер  | 318 | 7    | 6    | 5     | 4    | 3   | 2    | 1     | 0     |
|--------|-----|------|------|-------|------|-----|------|-------|-------|
| Доступ | U   | R/W  | R/W  | R/W   | R/W  | R/W | R/W  | R/W   | R/W   |
| Сброс  | 0   | 0    | 0    | 0     | 0    | 0   | 0    | 0     | 0     |
|        |     | DATA | ACK  | STALL | NAK  | RX  | RXOF | DCEDD | CDCED |
|        | -   | SEQ  | RXED | RXED  | RXED | TO  | клОг | DOEKK | CRCER |

## Таблица 184 – Описание бит регистра HRXS

| No   | Функциональное | Расшифро                          | Расшифровка функционального имени бита, краткое описание |       |              |  |  |
|------|----------------|-----------------------------------|----------------------------------------------------------|-------|--------------|--|--|
| бита | имя бита       | назначения и принимаемых значений |                                                          |       |              |  |  |
| 318  | -              |                                   |                                                          |       |              |  |  |
| 7    | DATASEQ        |                                   |                                                          |       | IN_TRANS,    |  |  |
|      |                |                                   |                                                          |       | . DATA0 = 0, |  |  |
|      |                | DATA1 = 1                         |                                                          |       |              |  |  |
| 6    | ACK            | 1 –                               | ACK.                                                     |       |              |  |  |
|      | RXED           | 0 –                               | ACK                                                      |       |              |  |  |
| 5    | STALL          | 1 –                               | STALL.                                                   |       |              |  |  |
|      | RXED           | 0 –                               | STALL                                                    |       |              |  |  |
| 4    | NAK            | 1 -                               | NAK                                                      | •     |              |  |  |
|      | RXED           | 0 –                               | NAK                                                      |       |              |  |  |
| 3    | RXTO           | 1 -                               |                                                          |       |              |  |  |
|      |                | 0 –                               |                                                          |       |              |  |  |
| 2    | RXOF           | 1 -                               |                                                          |       | FIFO .       |  |  |
|      |                | 0 –                               |                                                          |       |              |  |  |
| 1    | BSERR          | 1 –                               |                                                          | stuff | ·            |  |  |
|      |                | 0 –                               | stuff                                                    |       |              |  |  |
| 0    | CRCERR         | 1 -                               |                                                          | CRC   |              |  |  |
|      |                | 0 –                               | CRC                                                      |       |              |  |  |

#### 20.9.3.11 MDR\_USB->HRXP

#### Таблица 185 – Регистр HRXP

| Номер  | 314 | 30        |
|--------|-----|-----------|
| Доступ | U   | R/W       |
| Сброс  | 0   | 0         |
|        | -   | RPID[3:0] |

# Таблица 186 - Описание бит регистра HRXP

| №    | Функциональн | Расшифровка функционального имени бита, краткое описание |
|------|--------------|----------------------------------------------------------|
| бита | ое имя бита  | назначения и принимаемых значений                        |
| 314  | -            |                                                          |
| 30   | RPID[3:0]    | Packet identifier                                        |

#### 20.9.3.12 MDR\_USB->HRXA

#### Таблица 187 – Регистр HRXA

| Номер  | 317 | 60         |
|--------|-----|------------|
| Доступ | U   | R/W        |
| Сброс  | 0   | 0          |
|        | •   | RADDR[6:0] |

## Таблица 188 – Описание бит регистра HRXA

| <b>№</b><br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|------------------|-------------------------|--------------------------------------------------------------------------------------------|
| 317              | -                       |                                                                                            |
| 60               | RADDR[6:0]              | ,                                                                                          |

#### 20.9.3.13 MDR\_USB->HRXE

## Таблица 189 – Регистр HRXE

| Номер  | 314 | 30          |
|--------|-----|-------------|
| Доступ | U   | R/W         |
| Сброс  | 0   | 0           |
|        | •   | RXENDP[3:0] |

# Таблица 190 – Описание бит регистра HRXE

| №    | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений.     |
| 314  | -              |                                                 |
| 30   | RXENDP[3:0]    | ,                                               |
|      |                |                                                 |

# Спецификация микросхем серии 1986ВЕ9ху, К1986ВЕ9ху, К1986ВЕ9хуК, К1986ВЕ92QI, К1986ВЕ92QC, 1986ВЕ91Н4, К1986ВЕ91Н4, 1986ВЕ94Н4, К1986ВЕ94Н4

## 20.9.3.14 MDR\_USB->HRXCS

| Таблица | 191.  | – Регистр | HRXCS  |
|---------|-------|-----------|--------|
| таолина | 171 - | – тегисто | HINAUS |

|        | -   | RXL | S[1:0] |
|--------|-----|-----|--------|
| Сброс  | 0   | 0   | 0      |
| Доступ | U   | R/W | R/W    |
| Номер  | 312 | 1   | 0      |
|        |     |     |        |

# Таблица 192 – Описание бит регистра HRXCS

| N₂   | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 312  | -              |                                                 |
| 10   | RXLS[1:0]      | USB:                                            |
|      |                | DISCONNECT = 0                                  |
|      |                | LOW_SPEED_CONNECT = 1                           |
|      |                | FULL_SPEED_CONNECT = 2                          |

## 20.9.3.15 MDR\_USB->HSTM

## Таблица 193 – Регистр HSTM

| Номер  | 318 | 70        |
|--------|-----|-----------|
| Доступ | U   | R/W       |
| Сброс  | 0   | 0         |
|        | •   | HSTM[7:0] |

# Таблица 194 – Описание бит регистра HSTM

| No   | Функциональное | Расшифровка функционального имени бита, краткое |  |
|------|----------------|-------------------------------------------------|--|
| бита | имя бита       | описание назначения и принимаемых значений      |  |
| 318  | -              |                                                 |  |
| 70   | HSTM[7:0]      | SOF , SOF.                                      |  |
|      |                | 48 , 48000                                      |  |
|      |                | 1 .                                             |  |
|      |                |                                                 |  |

#### 20.9.3.16 MDR\_USB->HRXFD

## Таблица 195 – Регистр HRXFD

| Номер  | 318 | 70         |
|--------|-----|------------|
| Доступ | U   | R/W        |
| Сброс  | 0   | 0          |
|        |     |            |
|        |     | RX         |
|        | -   | RX<br>FIFO |

#### Таблица 196 – Описание бит регистра HRXFD

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|
| 318       | -                          |                                                                                            |
| 70        | RX                         | IN_TRANS,                                                                                  |
|           | FIFO                       | ,                                                                                          |
|           | DATA[7:0]                  |                                                                                            |

#### 20.9.3.17 MDR\_USB->HRXFDC

# Таблица 197 – Регистр HRXFDC

| Номер  | 3116 | 150          |
|--------|------|--------------|
| Доступ | U    | R/W          |
| Сброс  | 0    | 0            |
|        |      |              |
|        |      | FIFO         |
|        | -    | FIFO<br>DATA |

## Таблица 198 – Описание бит регистра HRXFDC

| №    | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 3116 | -              |                                                 |
| 150  | FIFO           |                                                 |
|      | DATA           |                                                 |
|      | COUNT[15:0]    |                                                 |

# 20.9.3.18 MDR\_USB->HRXFC

# Таблица 199 – Регистр HRXFC

| Номер  | 311 | 0                |
|--------|-----|------------------|
| Доступ | U   | R/W              |
| Сброс  | 0   | 0                |
|        | •   | FIFO FORCE EMPTY |

#### Таблица 200 – Описание бит регистра HRXFC

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|
| 311       | -                          |                                                                                            |
| 0         | FIFO FORCE EMPTY           | 1                                                                                          |

#### 20.9.3.19 MDR\_USB->HTXFD

#### Таблица 201 – Регистр HTXFD

| Номер  | 318 | 70        |
|--------|-----|-----------|
| Доступ | U   | R/W       |
| Сброс  | 0   | 0         |
|        |     | TX        |
|        | -   | FIFO      |
|        |     | DATA[7:0] |

# Таблица 202 – Описание бит регистра HTXFD

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|
| 318       | -                       |                                                                                            |
| 70        | TX                      | OUTDATA0_TRANS                                                                             |
|           | FIFO                    | OUTDATA1_TRANS,                                                                            |
|           | DATA[7:0]               |                                                                                            |

#### 20.9.3.20 MDR\_USB->HTXFC

#### Таблица 203 – Регистр НТХГС

| Номер  | 311 | 0                |
|--------|-----|------------------|
| Доступ | U   | R/W              |
| Сброс  | 0   | 0                |
|        | -   | FIFO FORCE EMPTY |

## Таблица 204 – Описание бит регистра HTXFC

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|
| 311       | -                          |                                                                                            |
| 0         | FIFO FORCE EMPTY           | 1                                                                                          |

# 20.9.4 USB Slave (Device)

# 20.9.4.1 MDR\_USB->SEP[x].CTRL

## Таблица 205 – Регистр SEP[x].CTRL

| Номер  | 315 | 4              | 3               | 2                | 1            | 0           |
|--------|-----|----------------|-----------------|------------------|--------------|-------------|
| Доступ | U   | R/W            | R/W             | R/W              | R/W          | R/W         |
| Сброс  | 0   | 0              | 0               | 0                | 0            | 0           |
|        | -   | <b>EPISOEN</b> | <b>EPSSTALL</b> | <b>EPDATASEQ</b> | <b>EPRDY</b> | <b>EPEN</b> |

## Таблица 206 – Описание бит регистра USB\_SEPx.CTRL

| No   | Функциональное   | Расшиф | Расшифровка функционального имени бита, краткое описание |               |   |  |  |  |  |
|------|------------------|--------|----------------------------------------------------------|---------------|---|--|--|--|--|
| бита | имя бита         | _      | назначения и принимаемых значений                        |               |   |  |  |  |  |
| 315  | -                |        |                                                          |               |   |  |  |  |  |
| 4    | EPISOEN          | 0 –    |                                                          | ,             |   |  |  |  |  |
|      |                  | 1 –    |                                                          | •             |   |  |  |  |  |
|      |                  |        |                                                          | -             |   |  |  |  |  |
|      | EDGGEALL         |        | OTALI                                                    |               |   |  |  |  |  |
| 3    | EPSSTALL         | 0 –    | STALL                                                    | ;             |   |  |  |  |  |
|      |                  | 1 —    | ,                                                        | ,<br>OT 4 1 1 | , |  |  |  |  |
|      |                  |        |                                                          | STALL         |   |  |  |  |  |
| 2    | <b>EPDATASEQ</b> | 0 –    | IN                                                       | DATA0;        |   |  |  |  |  |
|      |                  | 1 -    | IN                                                       | DATA1.        |   |  |  |  |  |
| 1    | EPRDY            | 0 –    |                                                          |               | , |  |  |  |  |
|      |                  | 1 -    |                                                          |               |   |  |  |  |  |
|      |                  |        |                                                          | ,             |   |  |  |  |  |
|      |                  |        |                                                          |               |   |  |  |  |  |
|      |                  |        | 0                                                        |               |   |  |  |  |  |
| 0    | EPEN             | 0 —    |                                                          | ,             |   |  |  |  |  |
|      |                  | 1 –    |                                                          |               |   |  |  |  |  |
|      |                  |        |                                                          |               | , |  |  |  |  |
|      |                  |        | ,                                                        |               | , |  |  |  |  |
|      |                  |        | NAK                                                      |               |   |  |  |  |  |

#### 20.9.4.2 MDR\_USB->SEP[x].STS

## Таблица 207 – Регистр SEP[x].STS

| Номер  | 318 | 7           | 6           | 5             | 4           | 3          | 2          | 1         | 0          |
|--------|-----|-------------|-------------|---------------|-------------|------------|------------|-----------|------------|
| Доступ | U   | R/W         | R/W         | R/W           | R/W         | R/W        | R/W        | R/W       | R/W        |
| Сброс  | 0   | 0           | 0           | 0             | 0           | 0          | 0          | 0         | 0          |
|        |     | SC          | SC          | SC            |             |            |            | SC        | SC         |
|        |     |             |             |               | NAK         | SC         | SC         | 50        |            |
|        | -   | DATA<br>SEQ | ACK<br>RXED | STALL<br>SENT | NAK<br>SENT | SC<br>RXTO | SC<br>RXOF | BS<br>ERR | CRC<br>ERR |

Таблица 208 – Описание бит регистра USB\_SEPx.STS

| No   | Функциональное      | ре Расшифровка функционального имени бита, краткое |  |  |  |  |
|------|---------------------|----------------------------------------------------|--|--|--|--|
| бита | имя бита            | описание назначения и принимаемых значений         |  |  |  |  |
| 318  | -                   | •                                                  |  |  |  |  |
| 7    | SC<br>DATA<br>SEQ   | OUT_TRANS,<br>DATA0 = 0, DATA1= 1                  |  |  |  |  |
| 6    | SC<br>ACK<br>RXED   | 0- ;<br>1- ACK .                                   |  |  |  |  |
| 5    | SC<br>STALL<br>SENT | 0 – STALL;<br>1 – STALL                            |  |  |  |  |
| 4    | NAK<br>SENT         | 1 – NAK .<br>0 – NAK                               |  |  |  |  |
| 3    | SC<br>RXTO          | 1 —<br>0 —                                         |  |  |  |  |
| 2    | SC<br>RXOF          | 0 — ;<br>1 — ;                                     |  |  |  |  |
| 1    | SC<br>BS<br>ERR     | 0 – ;<br>1 – STUFF                                 |  |  |  |  |
| 0    | SC<br>CRC<br>ERR    | 0 – ;<br>1 – CRC                                   |  |  |  |  |

## 20.9.4.3 MDR\_USB->SEP[x].TS

# Таблица 209 – Регистр SEP[x].TS

| Номер  | 312 | 1            | 0   |
|--------|-----|--------------|-----|
| Доступ | U   | R/W          | R/W |
| Сброс  | 0   | 0            | 0   |
|        | •   | SCTTYPE[1:0] |     |

## Таблица 210 – Описание бит регистра SEP[x].TS

| $N_{\underline{0}}$ | Функциональное | Расшифровка функционального имени бита, краткое |  |  |
|---------------------|----------------|-------------------------------------------------|--|--|
| бита                | имя бита       | описание назначения и принимаемых значений      |  |  |
| 312                 | -              |                                                 |  |  |
| 10                  | SCTTYPE[1:0]   | ,                                               |  |  |
|                     |                | ENDPOINT_READY_BIT 1 0.                         |  |  |
|                     |                | SC_SETUP_TRANS = 0 SC_IN_TRANS = 1              |  |  |
|                     |                | SC_OUTDATA_TRANS = 2                            |  |  |

# 20.9.4.4 MDR\_USB->SEP[x].NTS

## Таблица 211 – Регистр SEP[x].NTS

| Номер  | 312 | 1    | 0       |
|--------|-----|------|---------|
| Доступ | U   | R/W  | R/W     |
| Сброс  | 0   | 0    | 0       |
|        | -   | NTTY | PE[1:0] |

## Таблица 212 - Описание бит регистра USB\_SEPx.NTS

| №    | Функциональное | Расшифровка функционального имени бита, краткое |  |  |
|------|----------------|-------------------------------------------------|--|--|
| бита | имя бита       | описание назначения и принимаемых значений      |  |  |
| 312  | -              |                                                 |  |  |
| 10   | NTTYPE[1:0]    | ,                                               |  |  |
|      |                | NAK.                                            |  |  |
|      |                | $SC\_SETUP\_TRANS = 0$                          |  |  |
|      |                | $SC_{IN}_{TRANS} = 1$                           |  |  |
|      |                | $SC_OUTDATA_TRANS = 2$                          |  |  |

## 20.9.4.5 MDR\_USB->SC

#### Таблица 213 – Регистр SC

| Номер  | 316 | 5     | 4     | 3    | 2    | 1       | 0     |
|--------|-----|-------|-------|------|------|---------|-------|
| Доступ | U   | R/W   | R/W   | R/W  | R/W  | R/W     | R/W   |
| Сброс  | 0   | 0     | 0     | 0    | 0    | 0       | 0     |
|        | -   | SCFSR | SCFSP | SCDC | SCTX | LS[1:0] | SCGEN |

## Таблица 214 – Описание бит регистра USB\_SC

| №    | Функциональное | Расшифровка функционального имени бита, краткое |  |  |  |
|------|----------------|-------------------------------------------------|--|--|--|
| бита | имя бита       | описание назначения и принимаемых значений      |  |  |  |
| 316  | -              |                                                 |  |  |  |
| 5    | SCFSR          | :                                               |  |  |  |
|      |                | 1 – 12 / ;                                      |  |  |  |
|      |                | 0-1,5 /                                         |  |  |  |
| 4    | SCFSP          | USB :                                           |  |  |  |
|      |                | 1 – FULL SPEED;                                 |  |  |  |
|      |                | 0 –LOW SPEED                                    |  |  |  |
| 3    | SCDC           | USB :                                           |  |  |  |
|      |                | 1 –                                             |  |  |  |
|      |                | 0 –                                             |  |  |  |
| 21   | SCTXL[1:0]     | SC_DIRECT_CONTROL_BIT,                          |  |  |  |
|      |                | SC_TX_LINE_STATE                                |  |  |  |
|      |                | USB :                                           |  |  |  |
|      |                | $SC_TX_LINE_STATE[2] = D+$                      |  |  |  |
|      |                | SC_TX_LINE_STATE [1] = D-                       |  |  |  |
| 0    | SCGEN          | 1 –                                             |  |  |  |
|      |                | 0 –                                             |  |  |  |

## 20.9.4.6 MDR\_USB->SLS

## Таблица 215 – Регистр SLS

| Номер  | 312 | 1     | 0       |
|--------|-----|-------|---------|
| Доступ | U   | R/W   | R/W     |
| Сброс  | 0   | 0     | 0       |
|        | •   | SCRXI | LS[1:0] |

# Таблица 216 – Описание бит регистра SLS

| $N_{\underline{0}}$ | Функциональное | Расшифровка функционального имени бита, краткое |  |  |  |
|---------------------|----------------|-------------------------------------------------|--|--|--|
| бита                | имя бита       | описание назначения и принимаемых значений      |  |  |  |
| 312                 | -              |                                                 |  |  |  |
| 10                  | SCRXLS[1:0]    | USB:                                            |  |  |  |
|                     |                | RESET = 0                                       |  |  |  |
|                     |                | LOW_SPEED_CONNECT = 1                           |  |  |  |
|                     |                | FULL_SPEED_CONNECT = 2                          |  |  |  |

#### 20.9.4.7 MDR\_USB->SIS

# Таблица 217 – Регистр SIS

| Номер  | 316 | 5 | 4                 | 3                | 2                 | 1            | 0           |
|--------|-----|---|-------------------|------------------|-------------------|--------------|-------------|
| Доступ | U   | U | R/W               | R/W              | R/W               | R/W          | R/W         |
| Сброс  | 0   | 1 | 0                 | 0                | 0                 | 0            | 0           |
|        | -   | - | SC<br>NAK<br>SENT | SC<br>SOF<br>REC | SC<br>RESET<br>EV | SC<br>RESUME | SC<br>TDONE |

# Таблица 218 - Описание бит регистра USB\_SIS

| No   | Функциональное | Расшифровка функционального имени бита, краткое |  |  |  |
|------|----------------|-------------------------------------------------|--|--|--|
| бита | имя бита       | описание назначения и принимаемых значений      |  |  |  |
| 316  | -              |                                                 |  |  |  |
| 5    | -              |                                                 |  |  |  |
| 4    | SC             | NAK                                             |  |  |  |
|      | NAK            | 1.                                              |  |  |  |
|      | SENT           | 1                                               |  |  |  |
| 3    | SC             | SOF                                             |  |  |  |
|      | SOF            | 1.                                              |  |  |  |
|      | REC            | 1                                               |  |  |  |
| 2    | SC             | 1                                               |  |  |  |
|      | RESET          | USB.                                            |  |  |  |
|      | EV             | 1                                               |  |  |  |
| 1    | SC             | 1                                               |  |  |  |
|      | RESUME         |                                                 |  |  |  |
|      |                | 1                                               |  |  |  |
| 0    | SC             | 1                                               |  |  |  |
|      | TDONE          |                                                 |  |  |  |
|      |                | 1                                               |  |  |  |

## 20.9.4.8 MDR\_USB->SIM

## Таблица 219 – Регистр SIM

| Номер  | 315 | 4                       | 3                  | 2                   | 1                  | 0                 |
|--------|-----|-------------------------|--------------------|---------------------|--------------------|-------------------|
| Доступ | U   | R/W                     | R/W                | R/W                 | R/W                | R/W               |
| Сброс  | 0   | 0                       | 0                  | 0                   | 0                  | 0                 |
|        | -   | SC<br>NAK<br>SENT<br>IE | SC<br>SOF<br>RECIE | SC<br>RESET<br>EVIE | SC<br>RESUME<br>IE | SC<br>TDONE<br>IE |

#### Таблица 220 – Описание бит регистра В SIM

| - 30 | Taohinta 220 - Officatine on 1 per incipa D_Stivi |                                  |                   |  |  |  |
|------|---------------------------------------------------|----------------------------------|-------------------|--|--|--|
| №    | Функциональное                                    | Расшифровка функционального име  | ени бита, краткое |  |  |  |
| бита | имя бита                                          | описание назначения и принимаемь | іх значений       |  |  |  |
| 316  | -                                                 |                                  |                   |  |  |  |
| 4    | SC                                                |                                  | NAK:              |  |  |  |
|      | NAK                                               | 1 – ;                            |                   |  |  |  |
|      | SENT                                              | 0 –                              |                   |  |  |  |
|      | IE                                                |                                  |                   |  |  |  |
| 3    | SC                                                |                                  | SOF:              |  |  |  |
|      | SOF                                               | 1 – ;                            |                   |  |  |  |
|      | RECIE                                             | 0 –                              |                   |  |  |  |
| 2    | SC                                                |                                  |                   |  |  |  |
|      | RESET                                             | :                                |                   |  |  |  |
|      | EVIE                                              | 1 – ;                            |                   |  |  |  |
|      |                                                   | 0 –                              |                   |  |  |  |
| 1    | SC                                                |                                  |                   |  |  |  |
|      | RESUME                                            | :                                |                   |  |  |  |
|      | IE                                                | 1 – ;                            |                   |  |  |  |
|      |                                                   | 0 –                              |                   |  |  |  |
| 0    | SC                                                |                                  |                   |  |  |  |
|      | TDONE                                             | :                                |                   |  |  |  |
|      | IE                                                | 1 – ;                            |                   |  |  |  |
|      |                                                   | 0 –                              |                   |  |  |  |

## 20.9.4.9 MDR\_USB->SA

## Таблица 221 - Регистр SA

| Номер  | 317 | 60            |
|--------|-----|---------------|
| Доступ | U   | R/W           |
| Сброс  | 0   | 0             |
|        | •   | SDEVADDR[6:0] |

## Таблица 222 - Описание бит регистра SA

|      |                | <u> </u>                                        |  |
|------|----------------|-------------------------------------------------|--|
| №    | Функциональное | Расшифровка функционального имени бита, краткое |  |
| бита | имя бита       | описание назначения и принимаемых значений      |  |
| 317  | -              |                                                 |  |
| 60   | SDEVADDR[6:0]  | USB                                             |  |

#### 20.9.4.10 MDR\_USB->SFN

#### Таблица 223 – Регистр SFN

| Номер  | 3111 | 100        |
|--------|------|------------|
| Доступ | U    | R/W        |
| Сброс  | 0    | 0          |
|        |      | FRAME      |
|        | •    | NUM [10:0] |

# Таблица 224 – Описание бит регистра SFN

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|--|
| 3111      | -                       |                                                                                            |  |
| 100       | FRAME                   | , SOF                                                                                      |  |
|           | NUM [10:0]              |                                                                                            |  |

#### 20.9.4.11 MDR\_USB->SEP[x].RXFD

#### Таблица 225 – Регистр SEP[x].RXFD

| Номер  | 318 | 70        |  |
|--------|-----|-----------|--|
| Доступ | U   | R/W       |  |
| Сброс  | 0   | 0         |  |
|        |     | RX FIFO   |  |
|        | •   | DATA[7:0] |  |

#### Таблица 226 – Описание бит регистра SEP[x].RXFD

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |              |   |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|--------------|---|
| 318       | -                       |                                                                                            |              |   |
| 70        | RX FIFO                 | OUTDATA_TRANS                                                                              | SETUP_TRANS  | , |
|           | DATA[7:0]               |                                                                                            | RX_FIFO_DATA |   |

#### 20.9.4.12 MDR\_USB->SEP[x].RXFDC

#### Таблица 227 – Регистр SEP[x].RXFDC

| Номер  | 3116 | 150          |
|--------|------|--------------|
| Доступ | U    | R/W          |
| Сброс  | 0    | 0            |
|        |      | FIFO DATA    |
|        | -    | COUNT [15:0] |

#### Таблица 228 – Описание бит регистра SEP[x].RXFDC

| <b>№</b><br>бита | Функциональное имя бита   | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|------------------|---------------------------|--------------------------------------------------------------------------------------------|
| 3116             | -                         | •                                                                                          |
| 150              | FIFO DATA<br>COUNT [15:0] |                                                                                            |

#### 20.9.4.13 MDR\_USB->SEP[x].RXFC

#### Таблица 229 – Регистр SEP[x].RXFC

| Номер  | 311 | 0                   |
|--------|-----|---------------------|
| Доступ | U   | R/W                 |
| Сброс  | 0   | 0                   |
|        | -   | FIFO FORCE<br>EMPTY |

#### Таблица 230 – Описание бит регистра SEP[x].RXFC

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|--|
| 311       | -                       |                                                                                            |  |
| 0         | FIFO FORCE              | 1                                                                                          |  |
|           | EMPTY                   |                                                                                            |  |

#### 20.9.4.14 MDR\_USB->SEP[x].TXFD

## Таблица 231 – Регистр SEP[x].TXFD

| Номер  | 318 | 70        |
|--------|-----|-----------|
| Доступ | U   | R/W       |
| Сброс  | 0   | 0         |
|        |     | TX FIFO   |
|        | -   | DATA[7:0] |

## Таблица 232 – Описание бит регистра SEP[x].TXFD

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|--|
| 318       | -                       |                                                                                            |  |
| 70        | TX FIFO                 | IN_TRANS                                                                                   |  |
|           | DATA [7:0]              |                                                                                            |  |

#### 20.9.4.15 MDR\_USB->SEP[x].TXFDC

## Таблица 233 – Регистр SEP[x]. TXFDC

| Номер  | 311 | 0                   |
|--------|-----|---------------------|
| Доступ | U   | R/W                 |
| Сброс  | 0   | 0                   |
|        | -   | FIFO FORCE<br>EMPTY |

#### Таблица 234 – Описание бит регистра SEP[x]. TXFDC

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|
| 311       | -                       |                                                                                            |
| 0         | FIFO FORCE              | 1                                                                                          |
|           | EMPTY                   |                                                                                            |

# 21 Контроллер интерфейса MDR\_CAN

CAN. CAN-CAN 2.0A 2.0B 1 Сеть CAN1 МИКРОКОНТРОЛЛЕР CAN\_H CAN\_L КОНТРОЛЛЕР CAN1 1986BE91 Приемопередатчик CAN CAN\_RX CAN\_TX Rt КОНТРОЛЛЕР Приемопередатчик CAN CAN2 CAN\_RX CAN\_TX Узел CAN УзелСАN Rt

Рисунок 45. Структурная блок – схема организации сети CAN

Сеть CAN2

# 21.1 Режимы работы

CAN-

CAN\_STATUS: ROM = 0, STM = 0)
CAN\_TX CAN\_RX

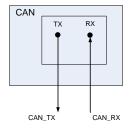



Рисунок 46. Режим нормальной передачи

ACK ( CAN\_CONTROL SAP ROP).

- Receive Only Mode
( CAN\_STATUS: ROM = 1, STM = 0)

CAN
,
«1».

• - Self Test Mode ( CAN\_STATUS : STM = 1, ROM = 0)

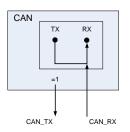



Рисунок 47. Режим работы только на прием - Receive Only Mode

CAN\_TX CAN\_RX

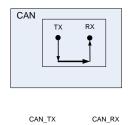
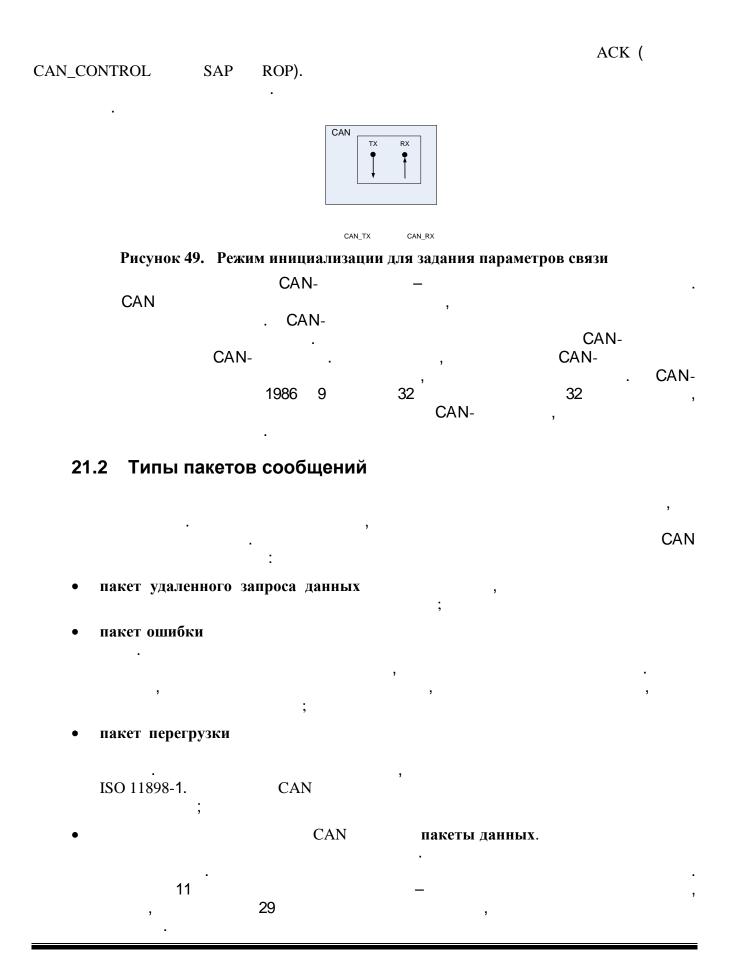
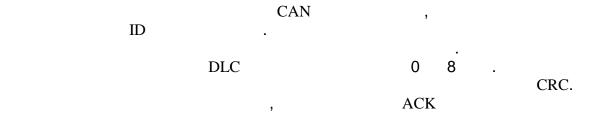





Рисунок 48. Режим самотестирования - Self Test Mode





# 21.3 Структура пакета данных (Data Frame)

```
7
- " " (SOF-start of frame);
- " " (arbitration field);
- " " (control field);
- " " (data field);
- " CRC" (CRC field);
- " " (ACK field);
- " " (end of frame).
```

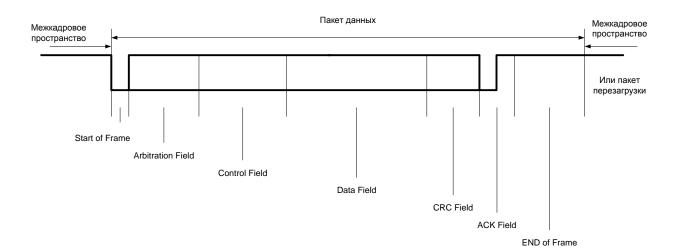



Рисунок 50. Пакет сообщения CAN

CAN . . ,

## 21.3.1 Начало пакета (Start of frame)

· ,

#### 21.3.2 Поле арбитража (Arbitration field)

**–** 11

RTR- ;

|   |               |        | Arbitration fiel | Control field |        |     |     |    |       |       |       | Data fi | CRC field |   |       |       |           |        |    |       |           |
|---|---------------|--------|------------------|---------------|--------|-----|-----|----|-------|-------|-------|---------|-----------|---|-------|-------|-----------|--------|----|-------|-----------|
|   | SOF<br>Bit 28 |        | Standart ID      |               |        |     | D   | LC |       |       | Byte0 |         |           |   |       |       |           |        |    |       |           |
| C |               | Bit 27 | ::               | Bit 19        | Bit 18 | RTR | IDE | RO | Bit 3 | Bit 2 | Bit 1 | Bit 0   | Bit 7     | : | Bit 0 | Byte1 | <br>Byte7 | Bit 14 | :: | Bit 0 | Delimiter |

Рисунок 51. Структура стандартного пакета данных

- SRR- IDE- RTR-

SRR- , IDE- RTR-

|     |        |        |             |        |        | Arb | itrat | ion f  | ield   |             |       |       |     |    | (  | Cont  | rol f | ield |       |       |       |       | Data fi | eld |       |        | CRC fi | eld   |           |
|-----|--------|--------|-------------|--------|--------|-----|-------|--------|--------|-------------|-------|-------|-----|----|----|-------|-------|------|-------|-------|-------|-------|---------|-----|-------|--------|--------|-------|-----------|
|     |        |        | Standart ID |        |        |     |       |        |        | Extended ID |       |       |     |    |    |       | D     | LC   |       |       | Byte0 |       |         |     |       |        | Byte0  |       |           |
| SOF | Bit 28 | Bit 27 | ï           | Bit 19 | Bit 18 | SRR | IDE   | Bit 17 | Bit 16 | :           | Bit 1 | Bit 0 | RTR | R1 | R0 | Bit 3 | Bit 2 |      | Bit 0 | Bit 7 | ::    | Bit 0 | Byte1   |     | Byte7 | Bit 14 | :      | Bit 0 | Delimiter |

Рисунок 52. Структура расширенного пакета данных

#### 21.3.2.1 Идентификатор

<del>-</del> . - 11

Standart ID .
Bit28 ... Bit18. - Bit18. 7 (Bit28 - Bit 22)

.

\_ . , 29 .

:

Standart ID - 11

Extended ID - 18

Standart ID 11 . Bit28 ... Bit18.

. Standart ID

Extended ID 18 . Bit17 Bit0.

RTR

21.3.2.2 Бит RTR

. RTR

. RTR

Standart ID,

IDE SRR. Extended ID SRR .

```
21.3.2.3 Бит SRR (расширенный формат)
                          RTR
                                                          RTR -
Standart ID
        21.3.2.4 Бит IDE (расширенный формат)
  IDE
  IDE
                                                                          IDE
    21.3.3 Поле управления (Control field)
                                                        (DLC),
                                                                  IDE,
    r1 r0.
    Код длины данных (Data length code)
        4
\{0,1,....,7,8\}.
    21.3.4 Поле данных (Data field)
                 0 8 ,
    21.3.5 Поле CRC (CRC field)
                              CRC
                                    CRC -
CRC
                                                                          CRC
    21.3.6 Поле подтверждения (ACK field)
                                                            (CRC
```

```
Конец пакета (End of frame)
21.3.7
21.3.8
         Структура пакета удаленного запроса данных (Remote frame)
                 " (Start of frame);
                   " (Arbitration field);
                      " (Control field);
         CRC" (CRC - field);
                        " (ACK field);
                 " (End of frame).
                                      , RTR
                                                                 [0,8].
                                                        . RTR
21.3.9
         Арбитраж на шине
                                 CAN
                                                               C
                     В
                           В
```



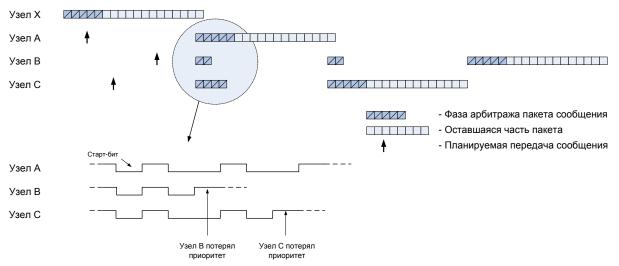



Рисунок 53. Арбитраж на шине CAN

« » CAN ID\_LOWER.

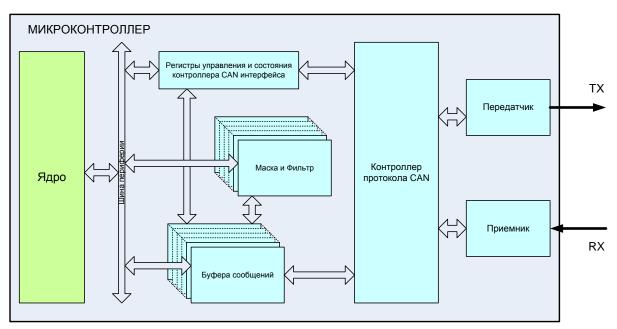



Рисунок 54. Структурная блок-схема контроллера CAN

#### 21.4 Инициализация

CAN

« ».

```
CAN1, 1
                   0
                                      CAN2
                                                   PER_CLOCK).
CAN_CLOCK
                         CANyCLKEN,
                     CAN.
                                                               HCLK
      CAN
                             CAN
           CAN.
                                                                SB, SJW,
SEG2, SEG1, PSEG
                            CAN BITTMNG.
                 BRP
                                      EN (
                                                       ) RXTXn(1 - 
0 -
          )
                     BUF_xx_CON.
                                      CANEN
                                                     CONTROL.
        CAN
    21.5 Передача сообщений
                                                          CAN_BUF[x].ID,
CAN BUF[x].DLC, CAN BUF[x].DATAL CAN BUF[x].DATAH),
TX REQ.
                         TX REQ
                                                               PRIOR_0.
                    PRIOR 0
                            ID
CAN (
                              ID
         Передача сообщений по Remote Transmit Request (RTR)
    21.6
                                           Remote Transmit Request
                                        RTR
                                                             INT_TX
                           (BUFF_CON[x])
                                                       TX_REQ = 0,
                            PRIOR_0,
                                                                   RTR
                      RX_TX = 0
      (RTR\_EN=1),
                                                                 EN = 1
                                                             SID EID.
      BUF_xx_DLC
                           DLC.
                                                    CAN_BUF[x].DATAL
CAN_BUF[x].DATAH
                                         CAN
                        RTR
    21.7
          Прием сообщений
                                                    CAN
```

#### 21.8 Автоматическая фильтрация принимаемых сообщений

CAN (CAN\_BUF\_FILTER[x].MASK) (CAN\_BUF\_FILTER[x].FILTER) ID & CAN BUF FILTER[x].MASK == CAN BUF FILTER[x].FILTER CAN\_BUF\_FILTER[x].FILTER CAN\_BUF\_FILTER[x].MASK 21.9 Перезапись принятых сообщений OVER EN. OVER WR. OVER WR. 1, OVER\_WR ( RX\_FULL), OVER WR RX\_FULL. OVER WR, OVER\_WR 21.10 Задание скорости передачи и момента семплирования CAN CAN (NRZ). DPLL. CAN 1 Nominal Bit Time ТВІТ = 1/Скорость передачи **DPLL** Time Quanta (TQ). Synchronization Segment (Sync\_Seg); Propagation Time Segment (PSEG);

- Phase Buffer Segment 1 (SEG1);
- Phase Buffer Segment 2 (SEG2).

Nominal Bit Time

TQ  $(\mu s) = ((BRP+1)) * Tclk (\mu s)$ 

8 25 TQ.

```
Nominal Bit Time = TQ * (Sync_Seg + PSEG + SEG1 + SEG2)

TQ
BRP
1 65536:

TQ (μs) = ((BRP+1))/CANx_CLK (MHz)
```

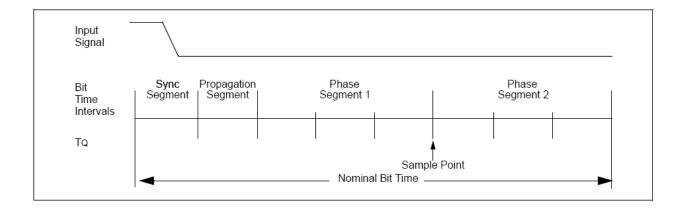



Рисунок 55. Структура битового интервала

Synchronization Segment

1 TQ.

Propagation Time Segment

1 8 TQ

Phase Buffer Segments

1 8 TQ.

#### 21.11 Синхронизация

**DPLL** 

Hard Synchronization

DPLL ,

Sync\_Seg.

Resynchronization

Sync\_Seg,

Phase Segment 2 , Phase Segment 2 ,

Phase Segment 1 Phase Segment 2

Synchronization Jump Width (SJW).

## 21.12 Обработка ошибок

CAN

, , CRC ) (

). .

STATUS FRAME\_ERR.

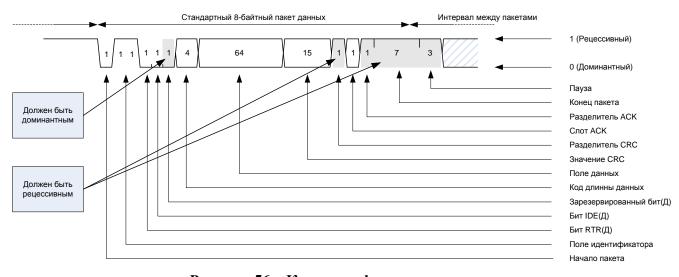



Рисунок 56. Контроль формата пакета

, , STATUS ACK\_ERR.



Рисунок 57. Контроль подтверждения

CAN 15- CRC,

4- CRC.

CRC , STATUS , CRC\_ERR.

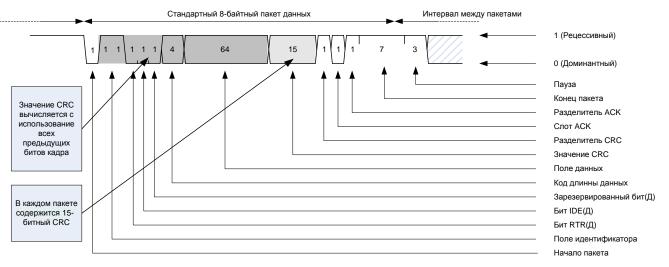
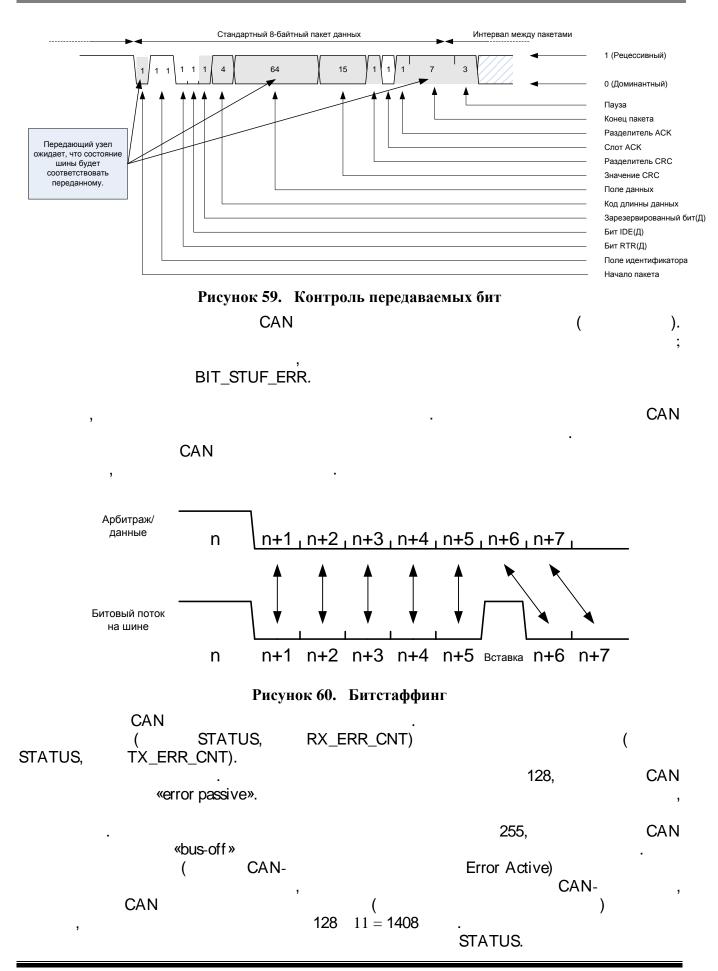




Рисунок 58. Контроль CRC

, CAN-

STATUS

BIT\_ERR



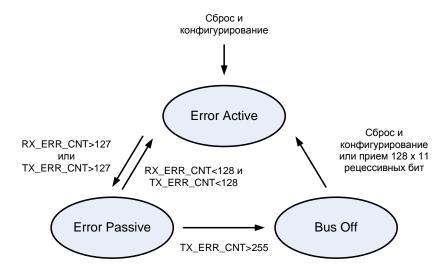



Рисунок 61. Счетчики ошибок

CAN . CAN\_STATUS
.
ERROR\_OVER.

CAN\_OVER. , CAN\_OVER

## 21.13 Прерывания

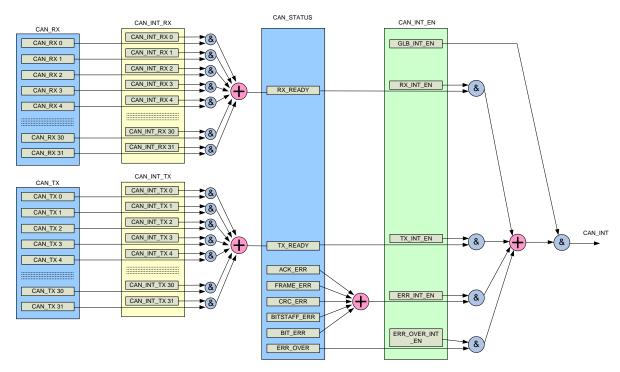



Рисунок 62. Схема формирования прерывания блока CAN

#### 21.14 Описание регистров контроллера CAN

Таблица 235 – Описание регистров контроллера CAN

| Базовый адрес | Название | Описание              |
|---------------|----------|-----------------------|
| 0x4000 0000   | MDR_CAN1 | CAN1                  |
| 0x4000_8000   | MDR_CAN2 | CAN2                  |
| 0x00          | CONTROL  | MDR_CANx->CONTROL CAN |
| 0×04          | STATUS   | MDR_CANx->STATUS CAN  |
| 0x08          | BITTMNG  | MDR_CANx->BITTMNG     |
| 0x10          | INT_EN   | MDR_CANx->INT_EN      |
| 0x1C          | OVER     | MDR_CANx->OVER        |
| 0x20          | RXID     | MDR_CANx->RXID        |
| 0x24          | RXDLC    | MDR_CANx->RXDLC DLC   |

| Базовый адрес | Название         | Описание                                |
|---------------|------------------|-----------------------------------------|
| 0x28          | RXDATAL          | MDR_CANx->RXDATAL                       |
| 0x2C          | RXDATAH          | MDR_CANx->RXDATAH                       |
| 0x30          | TXID             | MDR_CANx->TXID                          |
| 0x34          | TXDLC            | MDR_CANx->TXDLC DLC                     |
| 0x38          | DATAL            | MDR_CANx->TXDATAL                       |
| 0x3C          | DATAH            | MDR_CANx->TXDATAH                       |
| 0×40          | BUF_CON[0]       | MDR_CANx->BUF_CON 01                    |
| 0xBC          | BUF_CON[31]      | MDR_CANx->BUF_CON 32                    |
| 0xC0          | INT_RX           |                                         |
| 0xC4          | RX               | MDR_CANx->INT_RX  RX_FULL  MDR_CANx->RX |
| 0xC8          | INT_TX           |                                         |
| 0xCC          | TX               | MDR_CANx->INT_TX  ~TX_REQ  MDR_CANx->TX |
| 0x200         | CAN_BUF[0].ID    | MDR_CANx->CAN_BUF[x].ID ID 01           |
| 0x204         | CAN_BUF[0].DLC   | MDR_CANx->CAN_BUF[x].DLC DLC 01         |
| 0x208         | CAN_BUF[0].DATAL | MDR_CANx->CAN_BUF[x].DATAL              |
| 0x20C         | CAN_BUF[0].DATAH | MDR_CANx->CAN_BUF[x].DATAH 01           |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| Базовый адрес | Название                      | Описание                                     |
|---------------|-------------------------------|----------------------------------------------|
| 0x210         | CAN_BUF[1].ID                 | MDR_CANx->CAN_BUF[x].ID ID 02                |
| 0x3FC         | CAN_BUF[31].DATAH             | MDR_CANx->CAN_BUF[x].DATAH 32                |
| 0x500         | CAN_BUF_FILTER[0].MA<br>SK    | MDR_CANx-<br>>CAN_BUF_FILTER[x].MASK<br>01   |
| 0x504         | CAN_BUF_FILTER[0].FIL<br>TER  | MDR_CANx-<br>>CAN_BUF_FILTER[x].FILTER<br>01 |
| 0x508         | CAN_BUF_FILTER[1].MA<br>SK    | MDR_CANx-<br>>CAN_BUF_FILTER[x].MASK<br>02   |
| 0x5FC         | CAN_BUF_FILTER[31].FI<br>LTER | MDR_CANx- >CAN_BUF_FILTER[x].FILTER 32       |

#### 21.14.1 MDR\_CANx->CONTROL

Таблица 236 – Регистр управления контроллером CONTROL

| Номер  | 315 | 4   | 3   | 2   | 1   | 0         |
|--------|-----|-----|-----|-----|-----|-----------|
| Доступ | U   | R/W | R/W | R/W | R/W | R/W       |
| Сброс  | 0   | 0   | 0   | 0   | 0   | 0         |
|        | -   | ROP | SAP | STM | ROM | CAN<br>EN |

#### Таблица 237 – Описание бит регистра CONTROL

|      | _              | - ·          | Tuotinga zer omteame om pernerpa corvince |
|------|----------------|--------------|-------------------------------------------|
| No   | Функциональное | Расшифровк:  | а функционального имени бита, краткое     |
| бита | имя бита       | описание наз | начения и принимаемых значений            |
| 315  | -              |              | •                                         |
| 4    | ROP            |              | (Receive own packets):                    |
|      |                | 1 –          | ;                                         |
|      |                | 0 –          |                                           |
| 3    | SAP            |              | (Send ACK on own packets):                |
|      |                | 1 –          | ;                                         |
|      |                | 0 –          |                                           |
| 2    | STM            |              | (Self Test Mode):                         |
|      |                | 1 -          | ;                                         |
|      |                | 0 –          |                                           |
| 1    | ROM            | <b>«</b>     | » (Read Only Mode):                       |
|      |                | 1 -          | · ·                                       |
|      |                | 0 –          |                                           |
| 0    | CAN_EN         |              | CAN:                                      |
|      |                | 1 –          | ;                                         |
|      |                | 0 –          |                                           |

#### 21.14.2 MDR\_CANx->STATUS

#### Таблица 238 – Регистр состояния контроллера STATUS

| Номер  | 7          | 6            | 5          | 4                   | 3          | 2             | 1           | 0           |
|--------|------------|--------------|------------|---------------------|------------|---------------|-------------|-------------|
| Доступ | R/W        | R/W          | R/W        | R/W                 | R/W        | R/W           | RO          | RO          |
| Сброс  | 0          | 0            | 0          | 0                   | 0          | 0             | 0           | 0           |
|        | ACK<br>ERR | FRAME<br>ERR | CRC<br>ERR | BIT<br>STUFF<br>ERR | BIT<br>ERR | ERROR<br>OVER | TX<br>READY | RX<br>READY |

| Номер  | 3124      | 2316      | 1513 | 12        | 11        | 109                | 8           |
|--------|-----------|-----------|------|-----------|-----------|--------------------|-------------|
| Доступ | RO        | RO        | U    | RO        | RO        | RO                 | R/W         |
| Сброс  | 0         | 0         | 0    | 0         | 0         | 0                  | 0           |
|        |           |           |      |           |           |                    |             |
|        | TX        | RX        |      | TX        | RX        | EDD                | ID          |
|        | TX<br>ERR | RX<br>ERR | -    | TX<br>ERR | RX<br>ERR | ERR<br>STATUS[1:0] | ID<br>LOWER |

#### Таблица 239 – Описание бит регистра STATUS

| N₂   | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
|      |                | i i i i i i i i i i i i i i i i i i i           |
| бита | имя бита       | описание назначения и принимаемых значений      |
| 3124 | TX             | TEC, [7:0]:                                     |
|      | ERR            | TEC > 127, ERROR PASSIVE                        |
|      | CNT [7:0]      |                                                 |
| 2316 | RX             | REC, [7:0]:                                     |
|      | ERR            | REC > 127, ERROR PASSIVE                        |
|      | CNT [7:0]      |                                                 |
| 1513 | -              |                                                 |
| 12   | TX             | TEC, 8:                                         |
|      | ERR            | 0 – TEC 255;                                    |
|      | CNT8           | 1 – TEC 255                                     |
| 11   | RX             | REC, 8:                                         |
|      | ERR            | 0 – REC 255;                                    |
|      | CNT8           | 1 – REC 255                                     |
| 109  | ERR            | CAN:                                            |
|      | STATUS[1:0]    | 00 – ERROR ACTIVE,                              |
|      |                | ;                                               |
|      |                | 01 – ERROR PASSIVE,                             |
|      |                | ;                                               |
|      |                | 1x – BUS OFF,                                   |
| 8    | ID             | « » :                                           |
|      | LOWER          | 0 – ;                                           |
|      |                | 1 –                                             |
| 7    | ACK            | :                                               |
|      | ERR            | 0 – ;                                           |
|      |                | 1 –                                             |
| 6    | FRAME          | :                                               |
|      | ERR            | 0 – ;                                           |
|      |                | 1-                                              |
| L    |                |                                                 |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| №    | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 5    | CRC            | :                                               |
|      | ERR            | 0 – ;                                           |
|      |                | 1 –                                             |
| 4    | BIT            | :                                               |
|      | STUFF ERR      | 0 – ;                                           |
|      |                | 1 –                                             |
| 3    | BIT            | :                                               |
|      | ERR            | 0 – ;                                           |
|      |                | 1 –                                             |
| 2    | ERROR          | TEC REC , ERROR_MAX:                            |
|      | OVER           | 0 - ERROR_MAX < TEC REC;                        |
|      |                | 1 – ERROR_MAX TEC REC                           |
| 1    | TX             | :                                               |
|      | READY          | 0 <b>-</b> ;                                    |
|      |                | 1 –                                             |
| 0    | RX             | :                                               |
|      | READY          | 0 – ;                                           |
|      |                | 1 –                                             |

#### 21.14.3 MDR\_CANx->BITTMNG

#### Таблица 240 – Регистр задания скорости работы BITTMNG

| Номер  | 3128 | 27  | 2625         | 2422          | 2119          | 1816       | 150           |
|--------|------|-----|--------------|---------------|---------------|------------|---------------|
| Доступ | U    | R/W | R/W          | R/W           | R/W           | R/W        | R/W           |
| Сброс  | 0    | 0   | 0            | 0             | 0             | 0          | 0             |
|        | -    | SB  | SJW<br>[1:0] | SEG2<br>[2:0] | SEG1<br>[2:0] | PSEG [2:0] | BRP<br>[15:0] |

#### Таблица 241 – Описание бит регистра **BITTMNG**

| No   | Функциональное | Расшифровка функционального имени бита, краткое                              |
|------|----------------|------------------------------------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений                                   |
| 3128 | -              |                                                                              |
| 27   | SB             | :                                                                            |
|      |                | 0-;                                                                          |
|      |                | 1 –                                                                          |
| 2625 | SJW [1:0]      | SJW:                                                                         |
|      |                | $11 = $ Synchronization jump width time = $4 \times TQ$                      |
|      |                | $10 = $ Synchronization jump width time = $3 \times TQ$                      |
|      |                | $01 = $ Synchronization jump width time = $2 \times TQ$                      |
|      |                | 00 = Synchronization jump width time = 1 x TQ                                |
|      |                | SJW – ,                                                                      |
|      |                | CAN.                                                                         |
|      |                | , cm,                                                                        |
| 2422 | SEG2 [2:0]     | SEG2:                                                                        |
| 2422 | SEU2 [2.0]     | 111 = Phase Segment 2 time = 8 x TQ                                          |
|      |                | 111 = Phase Segment 2 time = 8 x TQ<br>110 = Phase Segment 2 time = 7 x TQ   |
|      |                | 101 = Phase Segment 2 time = 7 x TQ<br>101 = Phase Segment 2 time = 6 x TQ   |
|      |                | 100 = Phase Segment 2 time = 0  x TQ<br>100 = Phase Segment 2 time = 5  x TQ |
|      |                | 011 = Phase Segment 2 time = 4 x TQ                                          |
|      |                | 010 = Phase Segment 2 time = 1 x TQ                                          |
|      |                | 001 = Phase Segment 2 time = 2 x TQ                                          |
|      |                | 000 = Phase Segment 2 time = 1 x TQ                                          |
|      |                | SEG2 –                                                                       |
|      |                | ,                                                                            |
| 2119 | SEG1 [2:0]     | SEG1:                                                                        |
|      |                | 111 = Phase Segment 1 time = 8 x TQ                                          |
|      |                | 110 = Phase Segment 1 time = 7 x TQ                                          |
|      |                | 101 = Phase Segment 1 time = 6 x TQ                                          |
|      |                | 100 = Phase Segment 1 time = 5 x TQ                                          |
|      |                | 011 = Phase Segment 1 time = 4 x TQ                                          |
|      |                | 010 = Phase Segment 1 time = 3 x TQ                                          |
|      |                | 001 = Phase Segment 1 time = 2 x TQ                                          |
|      |                | 000 = Phase Segment 1 time = 1 x TQ                                          |
|      |                | SEG1 – ,                                                                     |
|      |                |                                                                              |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| №    | Функциональное | Расшифровка функционального имени бита, краткое  |
|------|----------------|--------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений       |
| 1816 | PSEG[2:0]      | PSEG                                             |
|      |                | $111 = Propagation time = 8 \times TQ$           |
|      |                | $110 = Propagation time = 7 \times TQ$           |
|      |                | $101 = Propagation time = 6 \times TQ$           |
|      |                | $100 = Propagation time = 5 \times TQ$           |
|      |                | $011 = Propagation time = 4 \times TQ$           |
|      |                | $010 = Propagation time = 3 \times TQ$           |
|      |                | $001 = Propagation time = 2 \times TQ$           |
|      |                | $000 = Propagation time = 1 \times TQ$           |
|      |                | PSEG -                                           |
|      |                | CAN                                              |
| 150  | BRP [15:0]     | :                                                |
|      |                | $CLK = CANx\_CLK/(BRP + 1)$                      |
|      |                | $TQ(us) = 1/CLK(MHz) = (BRP + 1)/CANx\_CLK(MHz)$ |

#### 21.14.4 MDR\_CANx->INT\_EN

Таблица 242 – Регистр разрешения прерываний INT\_EN

| Номер  | 315 | 4                        | 3                | 2               | 1               | 0                |
|--------|-----|--------------------------|------------------|-----------------|-----------------|------------------|
| Доступ | U   | U                        | R/W              | R/W             | R/W             | R/W              |
| Сброс  | 0   | 0                        | 0                | 0               | 0               | 0                |
|        | -   | ERR<br>OVER<br>INT<br>EN | ERR<br>INT<br>EN | TX<br>INT<br>EN | RX<br>INT<br>EN | GLB<br>INT<br>EN |

#### Таблица 243 – Описание бит регистра INT\_EN

| No   | Функциональное | Расшифповка | а функционального имени  |      |     |
|------|----------------|-------------|--------------------------|------|-----|
| бита | имя бита       |             | начения и принимаемых зн |      |     |
| 315  | -              |             | •                        |      |     |
| 4    | ERR            |             |                          | TEC  | REC |
|      | OVER           |             | ERROR_MAX:               |      |     |
|      | INT            | 0 —         | •                        |      |     |
|      | EN             | 1 –         |                          |      |     |
| 3    | ERR            |             |                          |      | :   |
|      | INT            | 0 –         | ;                        |      |     |
|      | EN             | 1 –         |                          |      |     |
| 2    | TX             |             |                          |      | :   |
|      | INT            | 0 –         | <b>;</b>                 |      |     |
|      | EN             | 1 –         |                          |      |     |
| 1    | RX             |             |                          | :    |     |
|      | INT            | 0 –         | <b>;</b>                 |      |     |
|      | EN             | 1 –         |                          |      |     |
| 0    | GLB            |             |                          | CAN: |     |
|      | INT            | 0 –         | •                        |      |     |
|      | EN             | 1 –         |                          |      |     |

#### 21.14.5 MDR\_CANx->OVER

#### Таблица 244 – Регистр границы счета ошибок OVER

| Номер  | 318 | 70             |
|--------|-----|----------------|
| Доступ | U   | R/W            |
| Сброс  | 0   | 0              |
|        | -   | ERROR_MAX[7:0] |

#### Таблица 245 - Описание бит регистра OVER

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|
| 318       | -                          |                                                                                            |
| 70        | ERROR                      |                                                                                            |
|           | MAX [7:0]                  | TEC REC,                                                                                   |
|           |                            | ERROR_OVER                                                                                 |

#### 21.14.6 MDR\_CANx->BUF\_CON[x]

#### Таблица 246 – Регистр управления буфером BUF\_CON[x]

| Номер  | 318 | 7          | 6          | 5         | 4           | 3         | 2          | 1         | 0   |
|--------|-----|------------|------------|-----------|-------------|-----------|------------|-----------|-----|
| Доступ | U   | R/W        | R/W        | R/W       | R/W         | R/W       | R/W        | R/W       | R/W |
| Сброс  | 0   | 0          | 0          | 0         | 0           | 0         | 0          | 0         | 0   |
|        | -   | OVER<br>WR | RX<br>FULL | TX<br>REQ | PRIO<br>R 0 | RTR<br>EN | OVER<br>EN | RX<br>TXn | EN  |

#### Таблица 247 – Описание бит регистра BUF\_CON[x]

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|
| 318       | -                       |                                                                                            |
| 7         | OVER_WR                 | :                                                                                          |
|           |                         | 0 – ;                                                                                      |
|           |                         | 1 –                                                                                        |
| 6         | RX_FULL                 | :                                                                                          |
|           |                         | 0 – ;                                                                                      |
|           |                         | 1 –                                                                                        |
| 5         | TX_REQ                  | :                                                                                          |
|           |                         | 0 – ;                                                                                      |
|           |                         | 1 –                                                                                        |
| 4         | PRIOR_0                 | :                                                                                          |
|           |                         | 0 – ;                                                                                      |
|           |                         | 1 –                                                                                        |
| 3         | RTR_EN                  | RTR:                                                                                       |
|           |                         | 0 – RTR;                                                                                   |
|           |                         | 1 – RTR                                                                                    |
| 2         | OVER_EN                 | :                                                                                          |
|           |                         | 0 – ;                                                                                      |
|           |                         | 1 –                                                                                        |

#### Спецификация микросхем серии 1986ВЕ9ху, К1986ВЕ9ху, К1986ВЕ9хуК, К1986ВЕ92QI, К1986ВЕ92QC, 1986ВЕ91Н4, К1986ВЕ91Н4, 1986ВЕ94Н4, К1986ВЕ94Н4

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |  |  |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|--|--|--|
| 1         | RX_TXn                  | :                                                                                          |  |  |  |
|           |                         | 0 — ;<br>1 — ;                                                                             |  |  |  |
| 0         | EN                      | :                                                                                          |  |  |  |
|           |                         | 0 — ;<br>1 — ;                                                                             |  |  |  |

#### 21.14.7 MDR\_CANx->INT\_RX

Таблица 248 – Регистр разрешения прерываний от приемных буферов INT\_RX

| Номер  | 310              |
|--------|------------------|
| Доступ | R/W              |
| Сброс  | 0                |
|        | CAN_INT_RX[31:0] |

#### Таблица 249 - Описание бит регистра INT\_RX

| №    | Функциональное | Расшифровка функционального имени бита, краткое |   |
|------|----------------|-------------------------------------------------|---|
| бита | имя бита       | описание назначения и принимаемых значений      |   |
| 310  | CAN            |                                                 | : |
|      | INT            | CAN_INT_RX[0] -                                 |   |
|      | RX[31:0]       | CAN_INT_RX[1] -                                 |   |

#### 21.14.8 MDR\_CANx->RX

#### Таблица 250 – Регистр RX флагов RX FULL от приемных буферов

| Номер  | 310          |
|--------|--------------|
| Доступ | RO           |
| Сброс  | 0            |
|        | CAN_RX[31:0] |

#### Таблица 251 – Описание бит регистра RX

| №    | Функциональное  | Расшифровка фун                       | Расшифровка функционального имени бита, краткое |             |   |  |  |
|------|-----------------|---------------------------------------|-------------------------------------------------|-------------|---|--|--|
| бита | имя бита        | описание назначен                     | ия и принимаем                                  | ых значений |   |  |  |
| 310  | CAN<br>RX[31:0] | RX_FULL<br>CAN_RX[0] –<br>CAN_RX[1] – | RX_FULL<br>RX_FULL                              | :           | , |  |  |

#### 21.14.9 MDR\_CANx->INT\_TX

Таблица 252 – Регистр разрешения прерываний от передающих буферов INT\_TX

| Номер  | 310              |
|--------|------------------|
| Доступ | R/W              |
| Сброс  | 0                |
|        | CAN_INT_TX[31:0] |

#### Таблица 253 – Описание бит регистра INT ТХ

| <b>№</b><br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|------------------|-------------------------|--------------------------------------------------------------------------------------------|
| 310              | CAN                     |                                                                                            |
|                  | INT                     | :                                                                                          |
|                  | TX[31:0]                | CAN_INT_TX[0] -                                                                            |
|                  | _                       | CAN_INT_TX[1] -                                                                            |

#### 21.14.10 MDR\_CANx->TX

Таблица 254 – Регистр ТХ флагов ~TX REQ от передающих буферов

| Номер  | 310          |
|--------|--------------|
| Доступ | RO           |
| Сброс  | 0            |
| _      | CAN_TX[31:0] |

#### Таблица 255 – Описание бит ТХ

| №    | Функциональное | Расшифровка функционального имени бита, краткое |  |  |  |  |
|------|----------------|-------------------------------------------------|--|--|--|--|
| бита | имя бита       | описание назначения и принимаемых значений      |  |  |  |  |
| 310  | CAN            | ~TX_REQ :                                       |  |  |  |  |
|      | TX[31:0]       | $CAN_TX[0] - \sim TX_REQ$                       |  |  |  |  |
|      |                | CAN_TX[1] - ~TX_REQ                             |  |  |  |  |
|      |                | <b>y</b>                                        |  |  |  |  |

#### 21.14.11 MDR\_CANx->RXID

MDR\_CANx->TXID

MDR\_CANx->CAN\_BUF[x].ID

MDR\_CANx->CAN\_BUF\_FILTER[x].MASK

MDR\_CANx->CAN\_BUF\_FILTER[x].FILTER

#### Таблица 256 – Регистры RXID, TXID и CAN\_BUF[x].ID идентификаторов

| Номер  | 3129 | 2818   | 170    |
|--------|------|--------|--------|
| Доступ | U    | R/W    | R/W    |
| Сброс  | 0    | 0      | 0      |
|        |      | SID    | EID    |
|        | •    | [10:0] | [17:0] |

Таблица 257 – Описание бит регистров RXID, TXID и CAN BUF[x].ID

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |                               |  |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|-------------------------------|--|
|           | имя онта                   | описание назна                                                                             | ачения и принимаемых значении |  |
| 3129      | ı                          |                                                                                            |                               |  |
| 2818      | SID                        | SID.                                                                                       |                               |  |
|           | [10:0]                     |                                                                                            | CAN.                          |  |
|           |                            |                                                                                            |                               |  |
|           |                            |                                                                                            | ,                             |  |
|           |                            |                                                                                            |                               |  |
| 170       | EID                        | EID.                                                                                       |                               |  |
|           | [17:0]                     |                                                                                            | CAN.                          |  |
|           | 2 3                        |                                                                                            |                               |  |
|           |                            |                                                                                            | 1                             |  |
|           |                            |                                                                                            |                               |  |

#### 21.14.12 MDR\_CANx->RXDLC MDR\_CANx->TXDLC MDR\_CANx->CAN\_BUF[x].DLC

Таблица 258 – Регистры RXDLC, TXDLC и CAN BUF[x].DLC сообщения

| Номер  | 3113 | 12  | 11  | 10  | 9   | 8   | 74 | 30           |
|--------|------|-----|-----|-----|-----|-----|----|--------------|
| Доступ | U    | R/W | R/W | R/W | R/W | R/W | U  | R/W          |
| Сброс  | 0    | 0   | 0   | 0   | 0   | 0   | 0  | 0            |
|        | -    | IDE | SRR | R0  | R1  | RTR | -  | DLC<br>[3:0] |

Таблица 259 – Описание бит регистров RXDLC, TXDLC и CAN BUF[x].DLC

| No   | Функциональное | <b>Расшифровка</b> | са функционального имени бита, краткое |
|------|----------------|--------------------|----------------------------------------|
| бита | имя бита       | описание назн      | значения и принимаемых значений        |
| 3113 | -              |                    |                                        |
| 12   | IDE            | IDE.               |                                        |
|      |                | ,                  | :                                      |
|      |                | 0 –                | •                                      |
|      |                | 1 -                |                                        |
| 11   | SRR            | SRR,               |                                        |
|      |                |                    | "1"                                    |
| 10   | R0             | R0.                |                                        |
|      |                |                    | "O"                                    |
| 9    | R1             | R1,                |                                        |
|      |                |                    | "1"                                    |
| 8    | RTR            | RTR,               | :                                      |
|      |                | 0 –                | ;                                      |
|      |                | 1 -                |                                        |
|      |                |                    | ,                                      |
|      |                |                    |                                        |
| 74   | -              |                    |                                        |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| No   | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 30   | DLC[3:0]       | DLC, :                                          |
|      |                | 0000 –                                          |
|      |                | 0001 - 1                                        |
|      |                | 0010-2                                          |
|      |                | 0011 - 3                                        |
|      |                | 0100 - 4                                        |
|      |                | 0101 – 5                                        |
|      |                | 0110 – 6                                        |
|      |                | 0111 – 7                                        |
|      |                | 1000 – 8                                        |
|      |                | 1xxx - 8                                        |

# 21.14.13 MDR\_CANx->RXDATAL MDR\_CANx->TXDATAL MDR\_CANx->CAN\_BUF[x].DATAL

#### Таблица 260 – Регистры RXDATAL, TXDATAL и CAN BUF[x]. DATAL данных сообщения

| Номер  | 3124     | 2316     | 158      | 70       |
|--------|----------|----------|----------|----------|
| Доступ | R/W      | R/W      | R/W      | R/W      |
| Сброс  | 0        | 0        | 0        | 0        |
|        | DB3[7:0] | DB2[7:0] | DB1[7:0] | DB0[7:0] |

#### Таблица 261 – Описание бит регистров RXDATAL, TXDATAL и CAN BUF[x].DATAL

| №    | Функциональное | Расшифровка функционального имени бита, краткое |   |  |  |
|------|----------------|-------------------------------------------------|---|--|--|
| бита | имя бита       | описание назначения и принимаемых значений      |   |  |  |
| 3124 | DB3[7:0]       | DB3.                                            | , |  |  |
| 2316 | DB2[7:0]       | DB2.                                            | , |  |  |
| 158  | DB1[7:0]       | DB1.                                            | , |  |  |
| 70   | DB0[7:0]       | DB0.                                            | , |  |  |

#### 21.14.14 MDR\_CANx->RXDATAH MDR\_CANx->TXDATAH MDR\_CANx->CAN\_BUF[x].DATAH

Таблица 262 – Регистры RXDATAH, TXDATAH и CAN\_BUF[x].DATAH данных сообщения

| Номер  | 3124     | 2316     | 158      | 70       |
|--------|----------|----------|----------|----------|
| Доступ | R/W      | R/W      | R/W      | R/W      |
| Сброс  | 0        | 0        | 0        | 0        |
|        | DB7[7:0] | DB6[7:0] | DB5[7:0] | DB4[7:0] |

## Таблица 263 – Описание бит регистров RXDATAH, TXDATAH и CAN\_BUF[x].DATAH

| № бита | Функциональное | Расшифровка функционального имени бита, краткое |   |  |  |
|--------|----------------|-------------------------------------------------|---|--|--|
|        | имя бита       | описание назначения и принимаемых значений      |   |  |  |
| 3124   | DB7[7:0]       | DB7.                                            | , |  |  |
| 2316   | DB6[7:0]       | DB6.                                            | , |  |  |
| 158    | DB5[7:0]       | DB5.                                            | , |  |  |
| 70     | DB4[7:0]       | DB4.                                            | , |  |  |

# 22 Таймеры общего назначения MDR\_TIMERx

```
16-
                                   16-
(
                                                                         , 16-
                                                        16-
                       4-
                                                            4
                                              DMA.
        16-
        16-
                              16-
                                                      DMA.
               16-
                    DMA
    22.1
           Функционирование
        Fdts
        DMA
DMA.
    22.1.1
             Структурная схема
                                                        63
                             16-
                                              CNT,
```

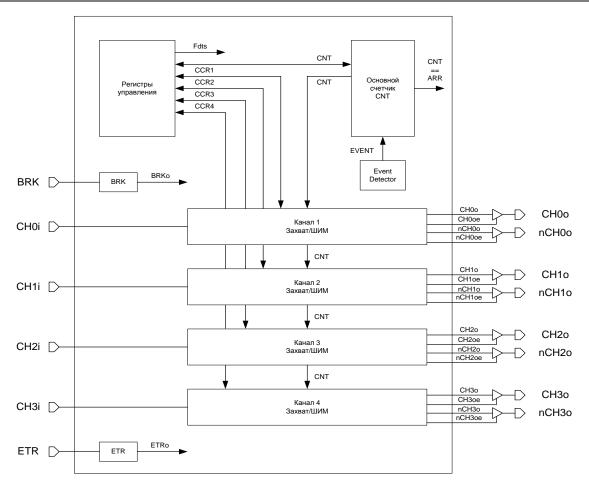



Рисунок 63. Структурная схема таймера

```
- ;
- , ;
- ;
```

#### 22.1.2 Соответствие выводов таймера выводам микроконтроллера

| BRK   | _ | TMRx_BLK  |
|-------|---|-----------|
| ETR   | _ | TMRx_ETR  |
| CH0i  | _ | TMRx_CH1  |
| CH1i  | _ | TMRx_CH2  |
| CH2i  | _ | TMRx_CH3  |
| CH3i  | _ | TMRx_CH4  |
|       |   |           |
| CH0o  | _ | TMRx_CH1  |
| CH1o  | _ | TMRx_CH2  |
| CH2o  | _ | TMRx_CH3  |
| CH3o  | _ | TMRx_CH4  |
|       |   |           |
| nCH0o | _ | TMRx_CH1N |
| nCH1o | _ | TMRx_CH2N |
| nCH2o | _ | TMRx_CH3N |
| nCH3o | _ | TMRx_CH4N |
|       |   |           |

#### 22.1.3 Инициализация таймера

```
«
                                                    ».
                    14
                                     15
                                                       16
PER CLOCK).
                                                 TIM CLKEN,
                       TIM CLOCK
HCLK
    22.1.4
           Режим таймера
                                                                   16-
                               16-
             ).
                            (TIMx_CNT);
                                             (TIMx_PSC);
                                    (TIMx_ARR).
                         CNT
                                                              TIM CLK,
                                          TxCHi
                                              -TIMx_CNT;
                                            -TIMx PSG,
                                  CLK= TIMx CLK/(PSG+1);
                                               TIMx_ARR;
                          TIMx_CNTRL:
                                                   EVENT SEL;
                                     CNT_MODE (
                                                       00 01
                                   10 11
                                                                         );
                                         DIR;
                             CNT EN.
                                        DMA,
    22.2
          Режимы счета
             : CNT_MODE = 00, DIR = 0  ( :
                                                          0
                                                               0 13,
       0 04)
      MDR TIMERx->CNTRL = 0x000000000;
                                           //Режим инициализации таймера
      //Настраиваем работу основного счетчика
      MDR TIMERx->CNT = 0 \times 000000004;
                                           //Начальное значение счетчика
      MDR TIMERx->PSG = 0 \times 000000000;
                                           //Предделитель частоты
      MDR TIMERx->ARR = 0x00000013;
                                           //Основание счета
```

```
//Разрешение работы таймера. 
 MDR_TIMERx->CNTRL = 0 \times 00000001; //Счет вверх по TIM\_CLK.
```

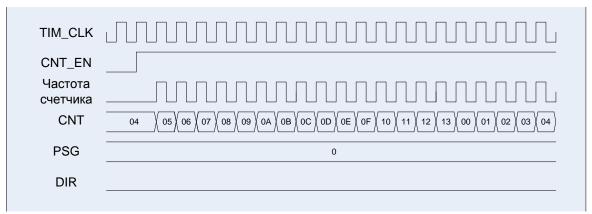



Рисунок 64. Диаграммы работы таймера, счет вверх

```
: CNT_MODE = 00, DIR = 1  ( : 0 13 0,
```

0 04)

```
MDR_TIMERx->CNTRL = 0x00000000; //Режим инициализации таймера //Настраиваем работу основного счетчика

MDR_TIMERx->CNT = 0x00000004; //Начальное значение счетчика

MDR_TIMERx->PSG = 0x00000000; //Предделитель частоты

MDR_TIMERx->ARR = 0x00000013; //Основание счета

//Разрешение работы таймера.

MDR_TIMERx->CNTRL = 0x00000009; //Счет вниз по ТІМ СЬК.
```

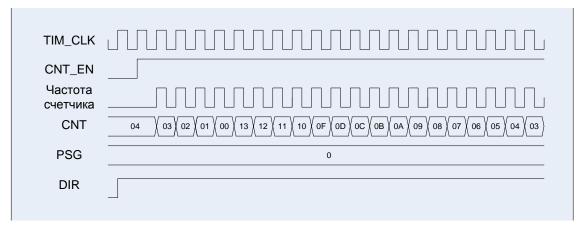



Рисунок 65. Диаграммы работы таймера, счет вниз

```
/ : CNT_MODE = 01, DIR = 0
```

```
MDR_TIMERx ->CNTRL = 0x00000000; //Режим инициализации таймера //Настраиваем работу основного счетчика

MDR_TIMERx ->CNT = 0x00000004; //Начальное значение счетчика

MDR_TIMERx ->PSG = 0x00000000; //Предделитель частоты

MDR_TIMERx ->ARR = 0x00000013; //Основание счета

//Разрешение работы таймера.

MDR TIMERx ->CNTRL = 0x00000041; //Счет вверх/вниз по ТІМ СЬК.
```



Рисунок 66. Диаграммы работы таймера, счет вверх/вниз, сначала вверх

```
/ : CNT_MODE = 01, DIR = 1
```

```
MDR_TIMERx->CNTRL = 0x00000000; //Режим инициализации таймера //Настраиваем работу основного счетчика

MDR_TIMERx->CNT = 0x00000004; //Начальное значение счетчика MDR_TIMERx->PSG = 0x000000000; //Предделитель частоты MDR_TIMERx->ARR = 0x00000013; //Основание счета

//Разрешение работы таймера.

MDR_TIMERx->CNTRL = 0x00000049; //Счет вверх/вниз по TIM_CLK.
```

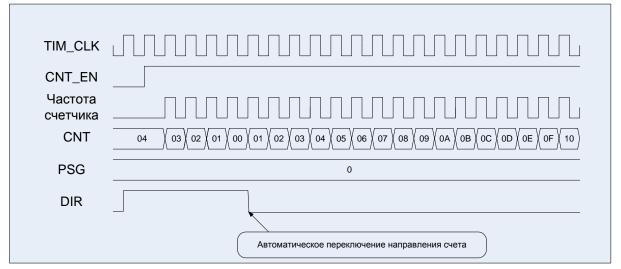



Рисунок 67. Диаграммы работы таймера, счет вверх/вниз, сначала вниз

#### 22.3 Источник событий для счета

```
    (TIM_CLK);
    (CNT==ARR );
    1: TxCHO ;
    2: ETR .
```

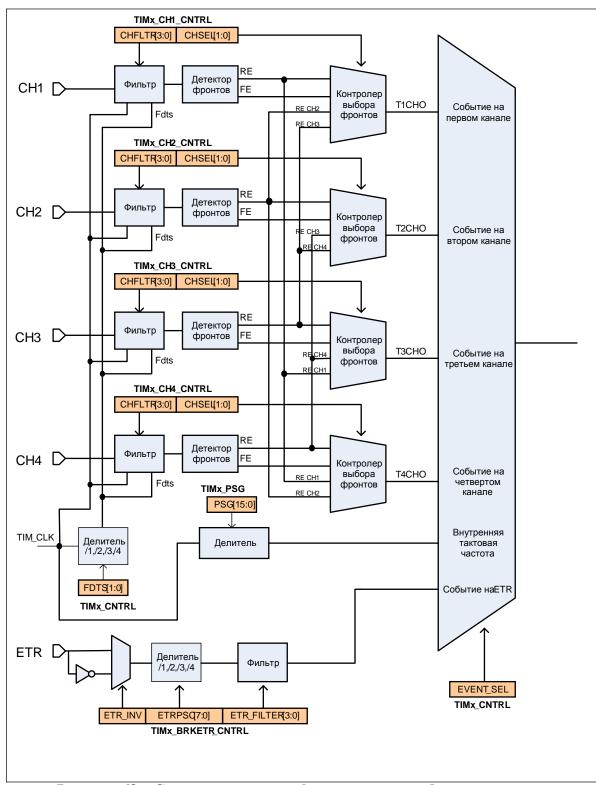



Рисунок 68. Структурная схема формирования события для счета

#### 22.3.1 Внутренний тактовый сигнал (TIM\_CLK)

 $CNT_MODE = 0x$ ,  $EVENT_SEL = 0000$ .

CNTRL. CNT, PSG ARR

CNT = ARR CNT = 0,

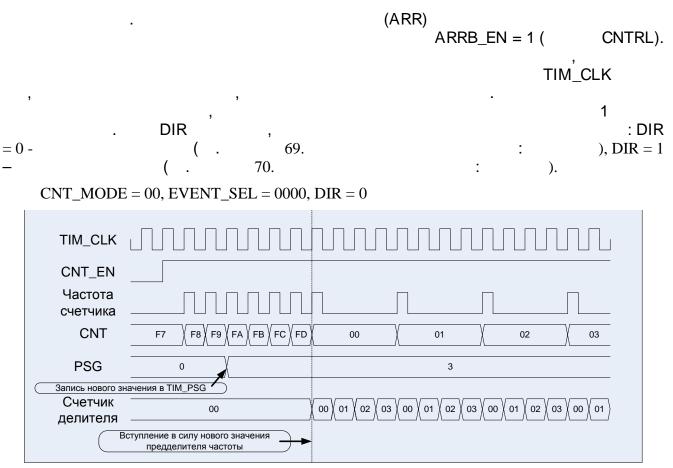



Рисунок 69. Диаграммы работы счетчика: счет вверх

 $CNT_MODE = 00$ ,  $EVENT_SEL = 0000$ , DIR = 1

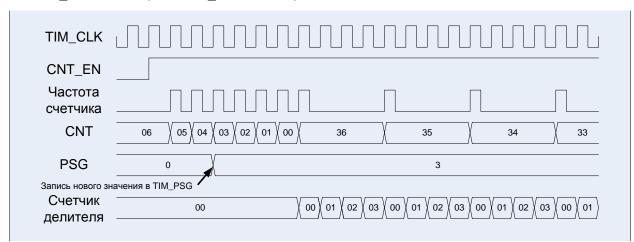



Рисунок 70. Диаграммы работы счетчика: счет вниз

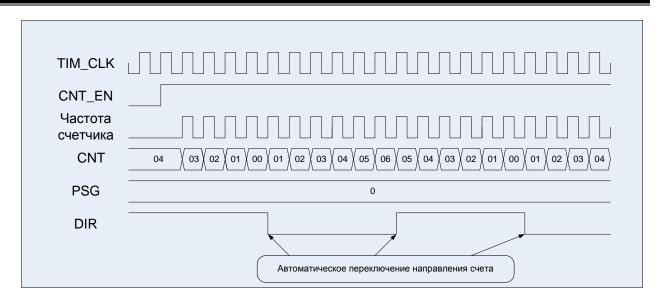



Рисунок 71. Диаграммы работы счетчика: счет вниз/вверх

#### 22.3.2 События в других счетчиках (CNT==ARR в таймере X)

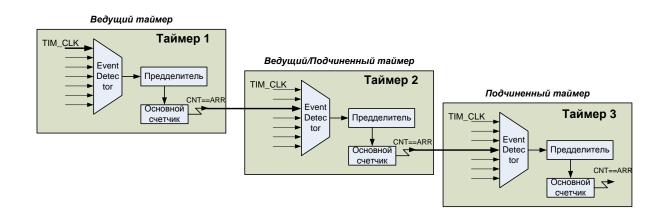



Рисунок 72. Пример каскадного соединения таймеров

DIR\_1, DIR\_2, DIR\_3 = 0; EVENT\_SEL\_1 = 0000, EVENT\_SEL\_2 = 0001, EVENT\_SEL\_3 = 0010; CNT\_MODE\_1, CNT\_MODE\_2, CNT\_MODE\_3 = 00;

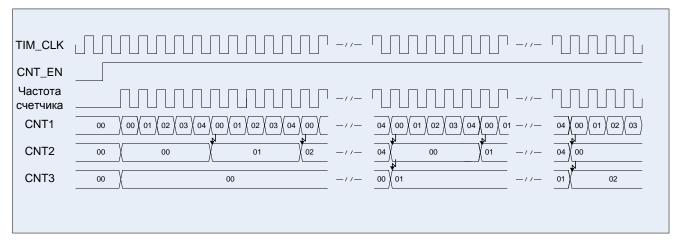



Рисунок 73. Диаграммы работы трех таймеров в каскаде

# 22.3.3 Внешний тактовый сигнал «Режим 1». События на линиях ТхСНО данного счетчика

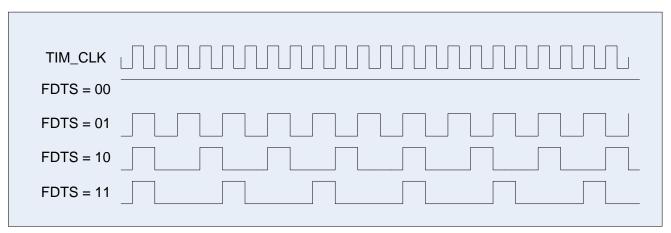



Рисунок 74. Диаграммы возможных частот семплирования данных (FDTS)

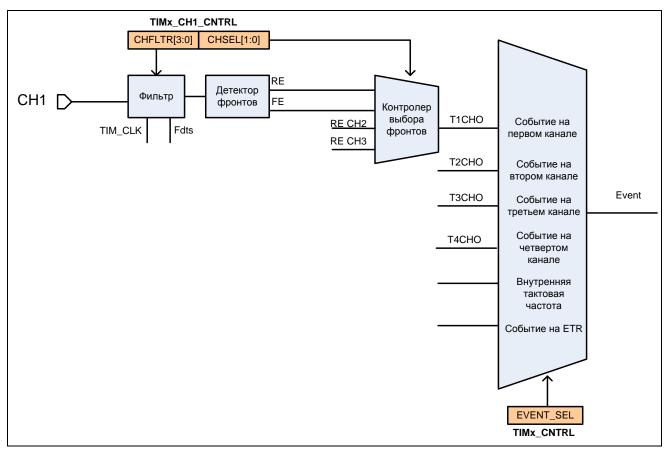



Рисунок 75. Тактирование с входа первого канала

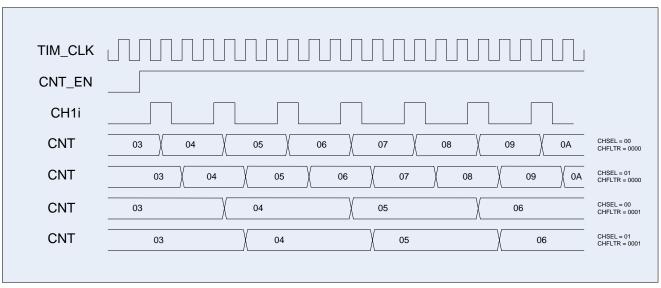



Рисунок 76. Диаграмма внешнего тактирования с разными вариантами фильтра

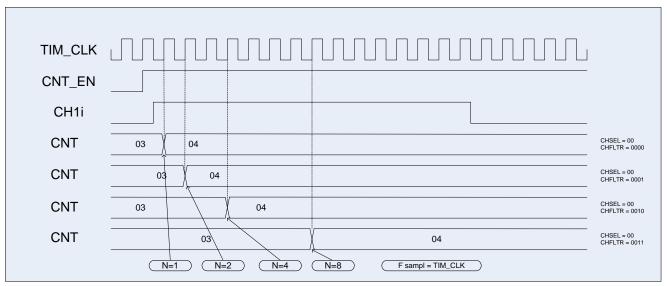



Рисунок 77. Диаграмма внешнего тактирования с разными вариантами фильтра

# 22.3.4 Внешний тактовый сигнал «Режим 2». События на входе ETR данного счетчика

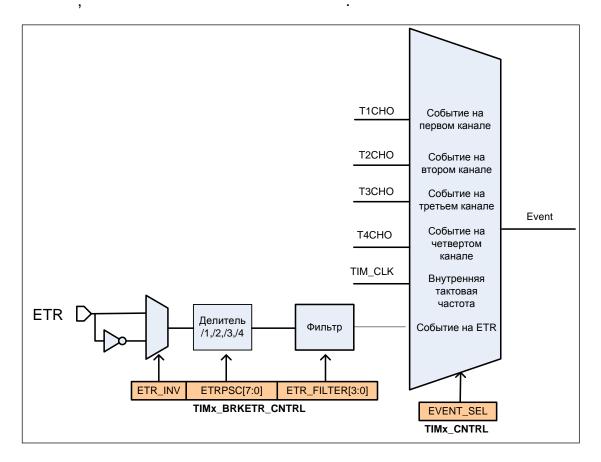



Рисунок 78. Схема тактирования сигналом со входа ETR

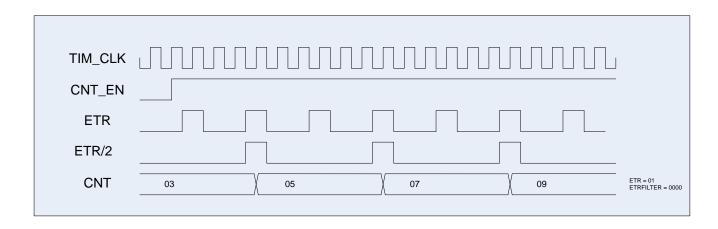



Рисунок 79. Диаграмма тактирования сигналом со входа ETR

#### 22.4 Режим захвата

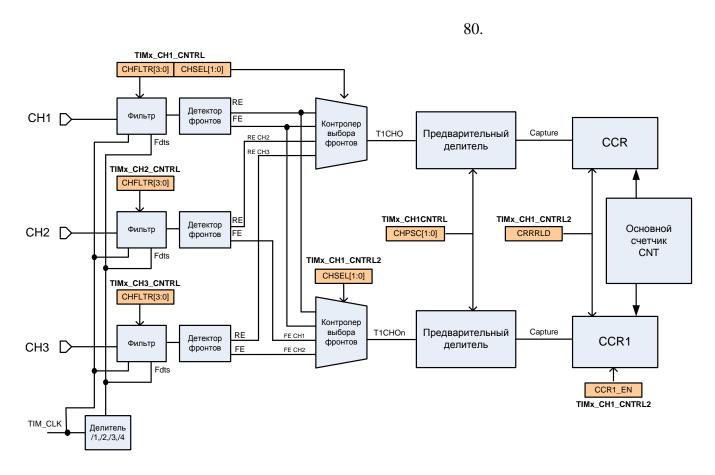



Рисунок 80. Структурная схема блока захвата на примере канала 1

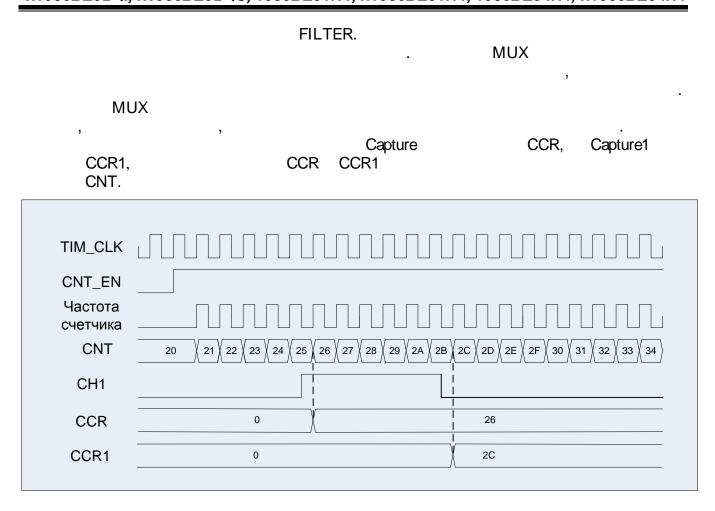



Рисунок 81. Диаграмма захвата события со входа первого канала

CCR , CCR1 -IE , DMA\_RE DMA.

#### 22.5 Режим ШИМ

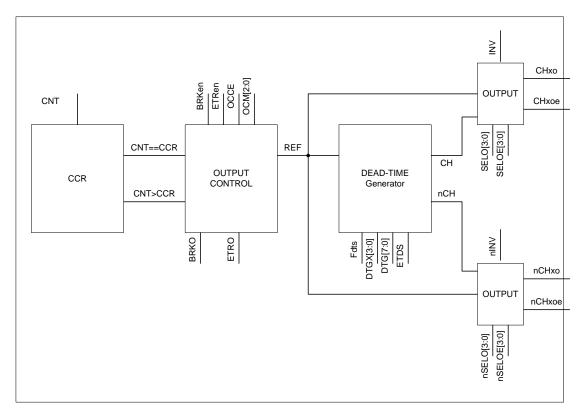



Рисунок 82. Структурная схема блока формирования ШИМ

```
CHy_CNTRL
                                                                        "0"
                                                                                           CAPnPWM.
                                                                                                                                                   CCR
                                   CNT
                                                                                                                                                      CNT.
                                                                       CCR, CCR1
                                                                                                                   CHxO
                                                                                                                                   nCHxO.
                                    DEAD TIME Generator
                                                                                                                                          CHxOE (
                        CHxNOE (
OE
                                                                           SELOE
                                                                                              nSELOE,
                                                                                            REF.
                                                                          \( \text{ 07 }\( \text{ 00 }\) \( \text{ 01 }\) \( \text{ 02 }\) \( \text{ 03 }\) \( \text{ 04 }\) \( \text{ 05 }\) \( \text{ 06 }\) \( \text{ 07 }\) \( \text{ 00 }\) \( \text{ 01 }\) \( \text{ 02 }\) \( \text{ 03 }\)
                                                                 05 ∤ 06
                  CNT
             CNT_EN
           REF,CCR=7
           REF,CCR=4
```

Рисунок 83. Диаграмма работы схемы в режиме ШИМ, CCR1\_EN=0

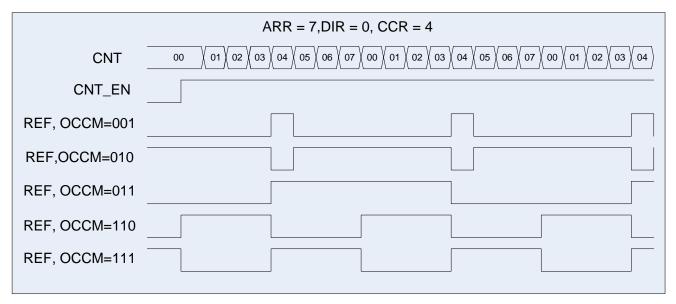



Рисунок 84. Диаграмма работы схемы в режиме ШИМ,  $CCR1\_EN = 0$  ETR, PCLK BRK.

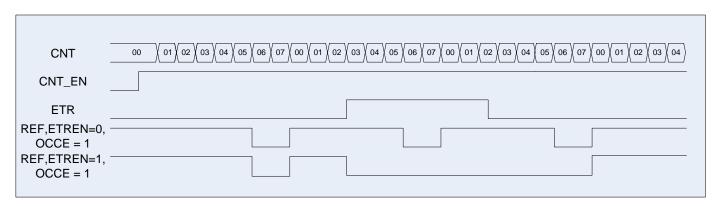



Рисунок 85. Диаграмма работы схемы в режиме ШИМ, CCR1 EN = 0

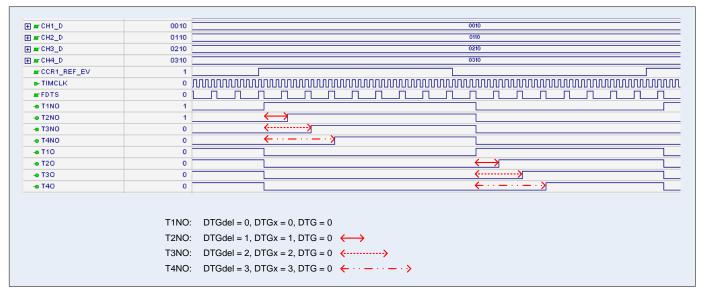
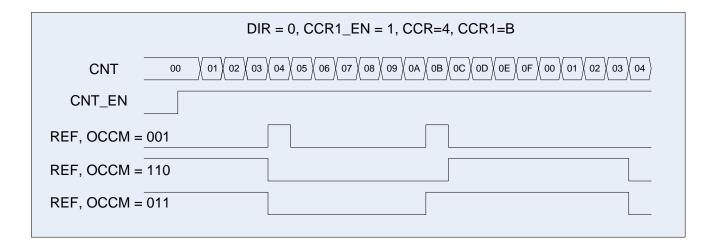




Рисунок 86. Диаграмма работы схемы DTG

```
 \begin{array}{c} \text{CCR1\_EN} = 1, & \text{CNT} \\ \text{CCR CCR1}, & \\ \text{REF} \left( & \text{CHy\_CNTRL OCCM} \right) \end{array}
```



Pисунок 87. Диаграмма работы схемы в режиме ШИМ, CCR1\_EN = 1

CCR CCR1, RRRLD,

CCR1 CCR CNT = 0,

. WR\_CMPL.

## 22.6 Примеры

#### 22.6.1 Обычный счетчик

```
MDR_RST_CLK->PER_CLOCK = 0xFFFFFFFF;
MDR_RST_CLK->TIM_CLOCK = 0x07000000;
MDR_TIMERx->CNTRL = 0x00000000;
//Hactpaubaem paбoty ochobhoro счетчика
MDR_TIMERx->CNT = 0x00000000; //Haчальное значение счетчика
MDR_TIMERx->PSG = 0x00000000; //Предделитель частоты
MDR_TIMERx->ARR = 0x0000000F; //Ochobahue счета

MDR_TIMERx->IE = 0x00000002; //Paspewehue генерировать
прерывание при CNT=ARR

MDR_TIMERx->CNTRL = 0x00000001; //Cчет вверх по TIM_CLK.
Разрешение работы таймера.
```

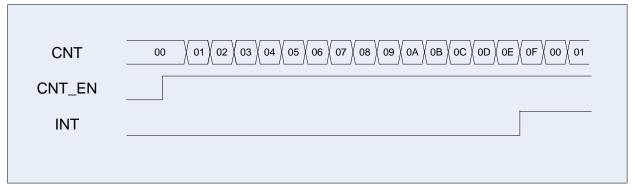



Рисунок 88. Режим обычного счетчика

#### 22.6.2 Режим захвата

```
MDR RST CLK->PER CLOCK = 0xfFffffff; //Разрешение тактовой
частоты таймеров
    MDR RST CLK->TIM CLOCK = 0x07000000; //Включение тактовой
частоты таймеров
    MDR TIMERx->CNTRL = 0 \times 000000000; //Режим инициализации таймера
    //Настраиваем работу основного счетчика
    MDR TIMERx->CNT = 0x000000000; //Havaльное значение счетчика
    MDR_TIMERx->PSG = 0x00000000; //Предделитель частоты
MDR_TIMERx->ARR = 0x000000FF; //Основание счета
    MDR TIMERx->IE = 0 \times 00001E00; //Paspewehue rehepupobath
прерывание
                              //по переднему фронту на выходе САР по
всем каналам
    //Режим работы каналов - захват
    MDR_TIMERx->CHy_CNTRL[0] = 0x00008000;
    MDR_TIMERx -> CHy_CNTRL[1] = 0x00008002;
    MDR TIMERx->CHy CNTRL[2] = 0 \times 00008001;
    MDR TIMERx->CHy CNTRL[3] = 0 \times 00008003;
    //Режим работы выхода канала - канал на выход не работает
    MDR_TIMERx->CHy_CNTRL1[0]= 0x00000000;
    MDR TIMERx->CHy CNTRL1[1] = 0x00000000;
    MDR TIMERx->CHy CNTRL1[2]= 0 \times 000000000;
    MDR TIMERx->CHy CNTRL1[3] = 0 \times 000000000;
    MDR TIMERx->CNTRL = 0x00000001; //Cuer beepx no TIM CLK.
Разрешение работы таймера
```

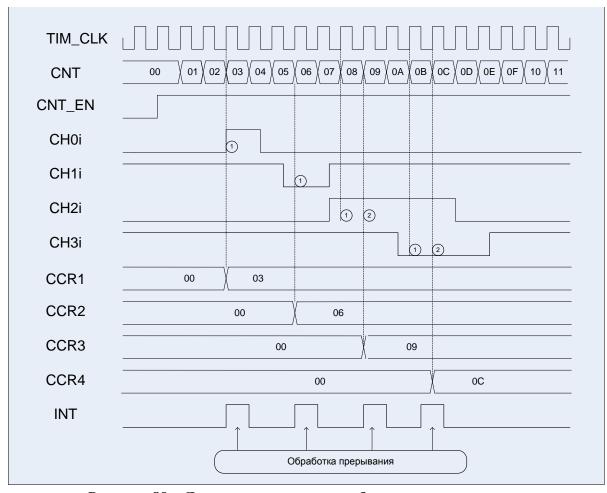



Рисунок 89. Диаграммы примера работы в режиме захвата

#### 22.6.3 Режим ШИМ

```
MDR RST CLK->PER CLOCK = 0xffffffff; //Разрешение тактовой
частоты таймеров
    MDR RST CLK->TIM CLOCK = 0x07000000; //Включение тактовой
частоты таймеров
    MDR TIMERx->CNTRL = 0x00000000; //Режим инициализации таймера
    //Настраиваем работу основного счетчика
    MDR_TIMERx->CNT = 0x00000000; //Начальное значение счетчика MDR_TIMERx->PSG = 0x000000000; //Предделитель частоты MDR_TIMERx->ARR = 0x00000010; //Основание счета
    MDR TIMERx->IE = 0 \times 000001E0; //Paspewehue rehepupobath
прерывание
                                //по переднему фронту на выходе REF по
всем каналам
    //Режим работы каналов - ШИМ
    MDR TIMERx->CHy CNTRL[0] = 0 \times 000000200;
    MDR TIMERx->CHy CNTRL[1] = 0 \times 00000200;
    MDR TIMERx->CHy CNTRL[2] = 0 \times 00000400;
    MDR_TIMERx -> CHy_CNTRL[3] = 0x00000600;
    //Режим работы выхода канала - канал на выход не работает
```

```
MDR_TIMERx->CHy_CNTRL1[0] = 0x00000099;
MDR_TIMERx->CHy_CNTRL1[1] = 0x00000099;
MDR_TIMERx->CHy_CNTRL1[2] = 0x00000099;
MDR_TIMERx->CHy_CNTRL1[3] = 0x00000099;
//Paspewehue работы таймера.
MDR_TIMERx->CNTRL = 0x00000001; //Счет вверх по ТІМ СЬК.
```

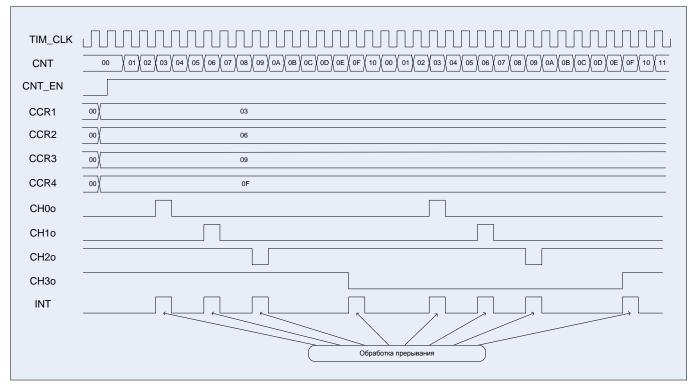



Рисунок 90. Диаграммы примера работы в режиме ШИМ

# 22.7 Описание регистров блока таймера

Таблица 264 – Базовые адреса и смещения регистров управления таймера

| Адрес       | Название               | Описание                   |
|-------------|------------------------|----------------------------|
| 0x4007_0000 | MDR_TIMER1             | Timer1                     |
| 0x4007_8000 | MDR_TIMER 2            | Timer2                     |
| 0x4008_0000 | MDR_TIMER 3            | Timer3                     |
| Смещение    |                        |                            |
| 0x00        | MDR_TIMERx->CNT[15:0]  | MDR_TIMERx->CNT            |
| 0x04        | MDR_TIMERx->PSG[15:0]  | MDR_TIMERx->PSG            |
| 0x08        | MDR_TIMERx->ARR[15:0]  | MDR_TIMERx->ARR            |
| 0x0C        | MDR_TIMERx->CNTRL[7:0] | MDR_TIMERx->CNTRL          |
| 0x10        | CCR1[15:0]             | MDR_TIMERx->CCRy , 1       |
| 0x14        | CCR2[15:0]             | MDR_TIMERx->CCRy , 2       |
| 0x18        | CCR3[15:0]             | MDR_TIMERx->CCRy           |
| 0x1C        | CCR4[15:0]             | MDR_TIMERx->CCRy           |
| 0x20        | CH1_CNTRL[15:0]        | MDR_TIMERx->CHy_CNTRL 1    |
| 0x24        | CH2_CNTRL[15:0]        | MDR_TIMERx->CHy_CNTRL 2    |
| 0x28        | CH3_CNTRL[15:0]        | MDR_TIMERx->CHy_CNTRL 3    |
| 0x2C        | CH4_CNTRL[15:0]        | MDR_TIMERx->CHy_CNTRL 4    |
| 0x30        | CH1_CNTRL1[15:0]       | MDR_TIMERx->CHy_CNTRL1 1 1 |
| 0x34        | CH2_CNTRL1[15:0]       | MDR_TIMERx->CHy_CNTRL1 1 2 |
| 0x38        | CH3_CNTRL1[15:0]       | MDR_TIMERx->CHy_CNTRL1 1 3 |
| 0x3C        | CH4_CNTRL1[15:0]       | MDR_TIMERx->CHy_CNTRL1 1 4 |
| 0x40        | CH1_DTG[15:0]          | MDR_TIMERx->CHy_DTG DTG 1  |
| 0x44        | CH2_DTG[15:0]          | MDR_TIMERx->CHy_DTG DTG 2  |
| 0x48        | CH3_DTG[15:0]          | MDR_TIMERx->CHy_DTG DTG 3  |
| 0x4C        | CH4_DTG[15:0]          | MDR_TIMERx->CHy_DTG DTG 4  |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| Адрес | Название           | Описание                         |
|-------|--------------------|----------------------------------|
| 0x50  | BRKETR_CNTRL[15:0] | MDR_TIMERx->BRKETR_CNTRL BRK ETR |
| 0x54  | STATUS[15:0]       | MDR_TIMERx->STATUS               |
| 0x58  | IE[15:0]           | MDR_TIMERx->IE                   |
| 0x5C  | DMA_RE[15:0]       | MDR_TIMERx->DMA_RE DMA           |
| 0x60  | CH1_CNTRL2[15:0]   | MDR_TIMERx->CHy_CNTRL2 2 1       |
| 0x64  | CH2_CNTRL2[15:0]   | MDR_TIMERx->CHy_CNTRL2 2 2       |
| 0x68  | CH3_CNTRL2[15:0]   | MDR_TIMERx->CHy_CNTRL2 2 3       |
| 0x6C  | CH4_CNTRL2[15:0]   | MDR_TIMERx->CHy_CNTRL2 2 4       |
| 0x70  | CCR11[15:0]        | MDR_TIMERx->CCRy1 1, 1           |
| 0x74  | CCR21[15:0]        | MDR_TIMERx->CCRy1 1, 2           |
| 0x78  | CCR31[15:0]        | MDR_TIMERx->CCRy1 1, 3           |
| 0x7C  | CCR41[15:0]        | MDR_TIMERx->CCRy1 1, 4           |

### 22.7.1 MDR\_TIMERx->CNT

#### Таблица 265 – Основной счетчик таймера CNT

| Номер  | 3116 | 15 0      |
|--------|------|-----------|
| Доступ | U    | R/W       |
| Сброс  | 0    | 0         |
|        | -    | CNT[15:0] |

#### Таблица 266 – Описание бит регистра CNT

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|
| 3116      | -                       |                                                                                            |
| 150       | CNT[15:0]               |                                                                                            |

### 22.7.2 MDR\_TIMERx->PSG

#### Таблица 267 – Делитель частоты при счете основного счетчика PSG

| Номер  | 3116 | 15 0      |
|--------|------|-----------|
| Доступ | U    | R/W       |
| Сброс  | 0    | 0         |
|        | -    | PSG[15:0] |

#### Таблица 268 – Описание бит регистра PSG

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|--|
| 3116      | -                       |                                                                                            |  |
| 150       | PSG[15:0]               |                                                                                            |  |
|           |                         | :                                                                                          |  |
|           |                         | $CLK = TIM_CLK/(PSG+1)$                                                                    |  |

#### 22.7.3 MDR\_TIMERx->ARR

#### Таблица 269 – Основание счета основного счетчика ARR

| Номер  | 3116 | 15 0      |
|--------|------|-----------|
| Доступ | U    | R/W       |
| Сброс  | 0    | 0         |
|        | -    | ARR[15:0] |

#### Таблица 270 – Описание бит регистра ARR

| №<br>бита   | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |  |
|-------------|-------------------------|--------------------------------------------------------------------------------------------|--|
| 3116        | -                       |                                                                                            |  |
| <b>15</b> 0 | ARR[15:0]               | :                                                                                          |  |
|             |                         | CNT = [0ARR]                                                                               |  |

# 22.7.4 MDR\_TIMERx->CNTRL

Таблица 271 – Регистр управления основного счетчика CNTRL

| Номер  | 3112 | 118      | 76        | 54    | 3   | 2    | 1    | 0   |
|--------|------|----------|-----------|-------|-----|------|------|-----|
| Доступ | U    | R/W      | R/W       | R/W   | R/W | R/W  | R/W  | R/W |
| Сброс  | 0    | 0        | 0         | 0     | 0   | 0    | 0    | 0   |
|        |      | EVENT    | CNT       | FDTS  | DIR | WR   | ARRB | CNT |
|        | -    | SEL[3:0] | MODE[1:0] | [1:0] | DIK | CMPL | EN   | EN  |

Таблица 272 – Описание бит регистра CNTRL

| No   | Функциональное | Расшифровка функционального имени бита, краткое описание |  |  |
|------|----------------|----------------------------------------------------------|--|--|
| бита | имя бита       | назначения и принимаемых значений                        |  |  |
| 3111 | -              |                                                          |  |  |
| 118  | EVENT_SEL      | :                                                        |  |  |
|      | [3:0]          | 0000 - TIM_CLK;                                          |  |  |
|      |                | 0001 - CNT == ARR  1;                                    |  |  |
|      |                | 0010 - CNT == ARR 2;<br>0011 - CNT == ARR 3;             |  |  |
|      |                | $0011 - CNT == ARR \qquad \qquad 3;$                     |  |  |
|      |                | 0100 –                                                   |  |  |
|      |                | 0101 –                                                   |  |  |
|      |                | 0110 –                                                   |  |  |
|      |                | 0111 –                                                   |  |  |
|      |                | 1000 – ETR « 2»                                          |  |  |
| 76   | CNT_MODE       | :                                                        |  |  |
|      | [1:0]          | 00 - DIR=0 ( PSG = 0)                                    |  |  |
|      |                | DIR=1 ( PSG = 0);                                        |  |  |
|      |                | 01 – / DIR                                               |  |  |
|      |                | PSG = 0;                                                 |  |  |
|      |                | 10 – DIR=0                                               |  |  |
|      |                | DIR=1;                                                   |  |  |
|      |                | 11 – / DIR                                               |  |  |
|      |                | CNT_MODE[1:0] = 00                                       |  |  |
|      |                | , EVENT_SEL = 0000;                                      |  |  |
|      |                | CNT_MODE[1:0] = 10                                       |  |  |
|      |                | , EVENT_SEL! = 0000                                      |  |  |
| 54   | FDTS[1:0]      | FDTS:                                                    |  |  |
|      |                | 00 – TIM_CLK;                                            |  |  |
|      |                | 01 – TIM_CLK;                                            |  |  |
|      |                | 10 – TIM_CLK;                                            |  |  |
|      |                | 11 – TIM_CLK                                             |  |  |
| 3    | DIR            | :                                                        |  |  |
|      |                | 0- , $0$ ARR;                                            |  |  |
|      |                | 1 – , ARR 0                                              |  |  |
| 2    | WR_CMPL        | , CNT,                                                   |  |  |
|      |                | PSG ARR:                                                 |  |  |
|      |                | 0 — ;                                                    |  |  |
|      |                | 1 –                                                      |  |  |
| 1    | ARRB_EN        | ARR                                                      |  |  |
|      |                | 0 - ARR ARR;                                             |  |  |
|      |                | 1 – ARR CNT                                              |  |  |

# Спецификация микросхем серии 1986ВЕ9ху, К1986ВЕ9ху, К1986ВЕ9хуК, К1986ВЕ92QI, К1986ВЕ92QC, 1986ВЕ91Н4, К1986ВЕ91Н4, 1986ВЕ94Н4, К1986ВЕ94Н4

| No   | Функциональное | Расшифровка функционального имени бита, краткое описание |
|------|----------------|----------------------------------------------------------|
| бита | имя бита       | назначения и принимаемых значений                        |
| 0    | CNT_EN         | :                                                        |
|      |                | 0 – ;                                                    |
|      |                | 1 –                                                      |

#### 22.7.5 MDR\_TIMERx->CCRy

### Таблица 273 – Регистр сравнения/захвата для 'у' канала таймера ССРу

| Номер  | 3116 | 15 0      |
|--------|------|-----------|
| Доступ | U    | R/W       |
| Сброс  | 0    | 0         |
|        | -    | CCR[15:0] |

### Таблица 274 – Описание бит регистра CCRy

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |     |  |  |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|-----|--|--|--|
| 3116      | -                       |                                                                                            |     |  |  |  |
| 150       | CCR[15:0]               | CCR, c                                                                                     | CNT |  |  |  |
|           |                         | CNT,                                                                                       | ,   |  |  |  |

## 22.7.6 MDR\_TIMERx->CCRy1

### Таблица 275 – Регистр сравнения/захвата для 'y' канала таймера CCRy1

|        |       | v i        |  |  |
|--------|-------|------------|--|--|
| Номер  | 3116  | 150        |  |  |
| Доступ | U R/W |            |  |  |
| Сброс  | 0     | 0          |  |  |
|        | -     | CCR1[15:0] |  |  |

#### Таблица 276 – Описание бит регистра CCRy1

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |     |  |  |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|-----|--|--|--|
| 3116      | -                       |                                                                                            |     |  |  |  |
| 150       | CCR1[15:0]              | CCR1, c                                                                                    | CNT |  |  |  |
|           |                         | CNT,                                                                                       | ,   |  |  |  |

## 22.7.7 MDR\_TIMERx->CHy\_CNTRL

# Таблица 277 – Регистр управления для 'у' канала таймера CHy\_CNTRL

| Номер  | 3116 | 15   | 14          | 13      | 12       | 119           | 8    | 76    | 54    | 30     |
|--------|------|------|-------------|---------|----------|---------------|------|-------|-------|--------|
| Доступ | U    | R/W  | RO          | R/W     | R/W      | R/W           | R/W  | R/W   | R/W   | R/W    |
| Сброс  | 0    | 0    | 0           | 0       | 0        | 0             | 0    | 0     | 0     | 0      |
|        | _    | CAP  | WR          | FTREN   | BRKEN    | OCCM<br>[2:0] | OCCE | CHPSC | CHSEL | CHFLTR |
|        | _    | nPWM | <b>CMPL</b> | E I KEI | DIXIXEIV | [2:0]         | OCCE | [1:0] | [1:0] | [3:0]  |

# Таблица 278 – Описание бит регистра CHy\_CNTRL

| № бита   | Фунуниональное                    | Расшифровка функционального имени бита, краткое описа                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|----------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| J\2 UHIA | <b>чупкциональнос</b><br>имя бита | назначения и принимаемых значений                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | anne |
| 3116     | -                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| 15       | CAP                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|          | nPWM                              | 1-;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|          |                                   | 0 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 14       | WR                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCR6 |
|          | CMPL                              | 1 – ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|          |                                   | 0 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 13       | ETREN                             | ETR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|          |                                   | 0 — ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 1.0      | 22222                             | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| 12       | BRKEN                             | BRK:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|          |                                   | 0 - ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 11 0     | OCCM[2.0]                         | 1 – REF :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 119      | OCCM[2:0]                         | CCR1_EN = 0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|          |                                   | $\begin{array}{c c} CCK1\_EN=0. \\ 000- 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|          |                                   | 000 - 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 0000 |      |
|          |                                   | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|          |                                   | 010-0, CNT = CCR; $011-$ REF, CNT = CCR;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|          |                                   | 100 - 0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|          |                                   | 100 – 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|          |                                   | 110 – 1,<br>110 – 1, DIR= 0 ( ), CNT <ccr, 0;<="" th=""><th></th></ccr,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|          |                                   | 0, DIR=1 ( ), CNT>CCR, 1;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|          |                                   | 0, DIR=1 ( ), CNT>CCR, 1;<br>111-0, DIR=0 ( ), CNT <ccr, 1;<="" th=""><th></th></ccr,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|          |                                   | 1. DIR=1 ( ), CNT>CCR, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|          |                                   | 1, DIR=1 ( ), CNT>CCR, 0. CCR1_EN = 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|          |                                   | 000 - 0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|          |                                   | 001 - 1, CNT = CCR CNT = CCR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|          |                                   | 010-0, CNT = CCR CNT = CCR1;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|          |                                   | 011 – REF, CNT =CCR CNT =CCR1;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|          |                                   | 100 - 0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|          |                                   | 101 – 1;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0;   |
|          |                                   | 0, DIR = 1 ( ), CCR < CNT < CCR1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1;   |
|          |                                   | 111 - 0,  DIR = 0  (),  CCR < CNT < CCR1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1;   |
|          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )    |
|          |                                   | , CCR < CCR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •    |

| № бита | Функциональное | Расшифро        | вка функциона  | льного имени бита, краткое | описание |
|--------|----------------|-----------------|----------------|----------------------------|----------|
|        | имя бита       | назначения      | я и принимаемі | ых значений                |          |
| 8      | OCCE           |                 | ETR:           |                            |          |
|        |                | 0 -             | ETR;           |                            |          |
|        |                | 1 –             | ETR            |                            |          |
| 76     | CHPSC[1:0]     |                 |                | :                          |          |
|        |                | 00 -            | ;              |                            |          |
|        |                | 01 - /2;        |                |                            |          |
|        |                | 10 - 4;         |                |                            |          |
|        | GIAGEA E4 03   | 11 -/8          |                |                            |          |
| 54     | CHSEL[1:0]     |                 | ,              | CHxi                       | 000      |
|        |                | 00              | (              | MDR_TIMERx->CNT)           | CCR:     |
|        |                | 00 -            |                | CHxi;                      |          |
|        |                | 01 –<br>10 –    |                | CHxi;                      |          |
|        |                | 10 –            |                | 2 ;                        |          |
|        |                |                 |                | 3 ;                        |          |
|        |                |                 |                | 4 ;                        |          |
|        |                |                 |                | 1 .                        |          |
|        |                | 11 –            |                | ;                          |          |
|        |                |                 |                | 3 ;                        |          |
|        |                |                 |                | 4 ;                        |          |
|        |                |                 |                | 1 ;                        |          |
|        |                |                 |                | 2                          |          |
| 30     | CHFLTR[3:0]    |                 | :              |                            |          |
|        |                | 0000 -          | 1              | TIM_CLK;                   |          |
|        |                | 0001 -          |                | TIM_CLK;                   |          |
|        |                | 0010 -          |                | TIM_CLK;                   |          |
|        |                | 0011 -          |                | TIM_CLK;                   |          |
|        |                | 0100 -          |                | FDTS/2;                    |          |
|        |                | 0101 -          |                | FDTS/2;                    |          |
|        |                | 0110 -          |                | FDTS/4;                    |          |
|        |                | 0111 -          |                | FDTS/4;                    |          |
|        |                | 1000 -          |                | FDTS/8;                    |          |
|        |                | 1001 - 1010 - 1 |                | FDTS/8;<br>FDTS/16;        |          |
|        |                |                 | 6              | FDTS/16;<br>FDTS/16;       |          |
|        |                |                 | 8              | FDTS/16;                   |          |
|        |                | 1100 -          |                | FDTS/32;                   |          |
|        |                | 1110 -          |                | FDTS/32;                   |          |
|        |                | 1111 -          |                | FDTS/32                    |          |

# 22.7.8 MDR\_TIMERx->CHy\_CNTRL1

Таблица 279 – Регистр управления 1 для 'у' канала таймера CHy\_CNTRL1

| Номер  | 3113 | 12   | 1110           | 98              | 75 | 4   | 32            | 10             |
|--------|------|------|----------------|-----------------|----|-----|---------------|----------------|
| Доступ | U    | R/W  | R/W            | R/W             | U  | R/W | R/W           | R/W            |
| Сброс  | 0    | 0    | 0              | 0               | 0  | 0   | 0             | 0              |
|        | -    | NINV | NSELO<br>[1:0] | NSELOE<br>[1:0] | -  | INV | SELO<br>[1:0] | SELOE<br>[1:0] |

# Таблица 280 – Описание бит регистра CHy\_CNTRL1

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений                      |   |
|-----------|----------------------------|-----------------------------------------------------------------------------------------------------------------|---|
| 3113      | -                          | •                                                                                                               |   |
| 12        | NINV                       | nCHy:<br>0 - ;<br>1 -                                                                                           |   |
| 1110      | NSELO[1:0]                 | nCHy: 00 - 0, 01 - 1,  10 - REF; 11 - DTG                                                                       | ; |
| 98        | NSELOE[1:0]                | nCHy 00 - nCHyOE 0, 01 - nCHyOE 1, ; 10 - nCHyOE REF, REF = 0 REF = 1; 11 - nCHyOE DTG, nCHyOE = 0 , nCHyOE = 1 | , |
| 75        | -                          |                                                                                                                 |   |
| 4         | INV                        | CH:<br>0-<br>1-                                                                                                 |   |
| 32        | SELO[1:0]                  | CH:  00 - 0, 01 - 1,  10 - REF; 11 - DTG                                                                        | ; |
| 10        | SELOE[1:0]                 | CH :  00 - CHyOE 0, 01 - CHyOE 1, ; 10 - CHyOE REF, REF = 0 , REF = 1 ; 11 - CHyOE DTG, CHyOE = 0 , CHyOE = 1   | ; |

## 22.7.9 MDR\_TIMERx->CHy\_CNTRL2

# Таблица 281 – Регистр управления 2 для 'у' канала таймера CHy\_CNTRL2

| Номер  | 31 5 | 4        | 3      | 2       | 10          |
|--------|------|----------|--------|---------|-------------|
| Доступ | U    | R/W      | R/W    | R/W     | R/W         |
| Сброс  | 0    | 0        | 0      | 0       | 00          |
|        | -    | EV_DELAY | CCRRLD | CCR1_EN | CHSEL [1:0] |

### Таблица 282 – Описание бит регистра CHy\_CNTRL2

| No   | Функционально | Расшифровка функционального имени бита, краткое |
|------|---------------|-------------------------------------------------|
| бита | е имя бита    | описание назначения и принимаемых значений      |
| 314  | -             |                                                 |
| 4    | EV_DELAY      | CCR CCR1:                                       |
|      | 2,_2,2,11     | 0-                                              |
|      |               | , CCR CCR1;                                     |
|      |               | 1-                                              |
|      |               | CCR CCR1                                        |
| 3    | CCRRLD        | CCR CCR1:                                       |
|      |               | 0 – ;                                           |
|      |               | 1 - CNT = 0                                     |
| 2    | CCR1_EN       | CCR1:                                           |
|      |               | 0-CCR1 ;                                        |
|      |               | 1 – CCR1                                        |
| 10   | CHSEL1[1:0]   | CHxi                                            |
|      |               | ( MDR_TIMERx->CNT)                              |
|      |               | CCR1:                                           |
|      |               | 00 – CHxi;                                      |
|      |               | 01 – CHxi;                                      |
|      |               | 10 – :                                          |
|      |               | - 2 ;<br>- 3 ;                                  |
|      |               | , , , , , , , , , , , , , , , , , , ,           |
|      |               | - 4 ;                                           |
|      |               | - 1 .                                           |
|      |               | 11 – :                                          |
|      |               | - 3 ;                                           |
|      |               | - 4 ;                                           |
|      |               | - 1 ;                                           |
|      |               | - 2                                             |

# 22.7.10 MDR\_TIMERx->CHy\_DTG

# Таблица 283 – Регистр CHy\_DTG управления DTG

| Номер  | 3116 | 158      | 75 | 4    | 30        |
|--------|------|----------|----|------|-----------|
| Доступ | U    | R/W      | U  | R/W  | R/W       |
| Сброс  | 0    | 0        | 0  | 0    | 0         |
|        | -    | DTG[7:0] | -  | EDTS | DTGx[3:0] |

### Таблица 284 - Описание бит регистра CHy\_DTG

| №    | Функциональное | Расшифровка функционального имени бита, краткое |  |  |  |
|------|----------------|-------------------------------------------------|--|--|--|
| бита | имя бита       | описание назначения и принимаемых значений      |  |  |  |
| 3116 | -              |                                                 |  |  |  |
| 158  | DTG[7:0]       |                                                 |  |  |  |
|      |                | DTGdel = DTG*(DTGx+1)                           |  |  |  |
| 75   | -              |                                                 |  |  |  |
| 4    | EDTS           | DTG:                                            |  |  |  |
|      |                | 0-TIM_CLK;                                      |  |  |  |
|      |                | 1 – FDTS                                        |  |  |  |
| 30   | DTGx [3:0]     | DTGx                                            |  |  |  |

### 22.7.11 MDR\_TIMERx->BRKETR\_CNTRL

Таблица 285 – Peructp BRKETR\_CNTRL управления входом BRK и ETR

| Номер  | 318 | 74                     | 32                  | 1          | 0          |
|--------|-----|------------------------|---------------------|------------|------------|
| Доступ | U   | R/W                    | R/W                 | R/W        | R/W        |
| Сброс  | 0   | 0                      | 0                   | 0          | 0          |
|        | -   | ETR<br>FILTER<br>[3:0] | ETR<br>PSC<br>[1:0] | ETR<br>INV | BRK<br>INV |

### Таблица 286 – Описание бит регистра BRKETR\_CNTRL

| N₂          | Функциональное                    | Расшифровка функционального имени бита, краткое |
|-------------|-----------------------------------|-------------------------------------------------|
| ота<br>бита | <b>чункциональнос</b><br>имя бита | описание назначения и принимаемых значений      |
|             | ими опта                          | описание назначения и принимаемых значении      |
| 318         | -                                 |                                                 |
| 74          | ETR                               | ETR.                                            |
|             | FILTER[3:0]                       | :                                               |
|             |                                   | 0000 - 1 TIM_CLK;                               |
|             |                                   | 0001 – 2 TIM_CLK;                               |
|             |                                   | 0010 - 4 TIM_CLK;                               |
|             |                                   | 0011 - 8 TIM_CLK;                               |
|             |                                   | 0100 - 6 FDTS/2;                                |
|             |                                   | 0101 - 8 FDTS/2;                                |
|             |                                   | 0110 - 6 FDTS/4;                                |
|             |                                   | 0111 - 8 FDTS/4;                                |
|             |                                   | 1000 – 6 FDTS/8;                                |
|             |                                   | 1001 – 8 FDTS/8;                                |
|             |                                   | 1010 – 5 FDTS/16;                               |
|             |                                   | 1010 – 3 1 1010 10;<br>1011 – 6 FDTS/165;       |
|             |                                   | 1100 – 8 FDTS/16;                               |
|             |                                   | 1100 – 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    |
|             |                                   | · · · · · · · · · · · · · · · · · · ·           |
|             |                                   | 1110 – 6 FDTS/32;                               |
| 0 0         | EED DOOLL OF                      | 1111 – 8 FDTS/32                                |
| 32          | ETRPSC[1:0]                       | :                                               |
|             |                                   | 00 – ;                                          |
|             |                                   | 01 - /2;                                        |
|             |                                   | 10 - /4;                                        |
|             |                                   | 11 - /8                                         |
| 1           | ETR                               | ETR:                                            |
|             | INV                               | 0 – ;                                           |
|             |                                   | 1 –                                             |
| 0           | BRK                               | BRK:                                            |
|             | INV                               | 0 – ;                                           |
|             |                                   | 1 –                                             |
|             |                                   | I                                               |

# 22.7.12 MDR\_TIMERx->STATUS

# Таблица 287 – Регистр статуса таймера STATUS

| Номер  | 3117 | 1613                          | 129                          | 85                           | 4            | 3                  | 2                  | 1                   | 0                    |
|--------|------|-------------------------------|------------------------------|------------------------------|--------------|--------------------|--------------------|---------------------|----------------------|
| Доступ | U    | R/W                           | R/W                          | R/W                          | R/W          | R/W                | R/W                | R/W                 | R/W                  |
| Сброс  | 0    | 0                             | 0                            | 0                            | 0            | 0                  | 0                  | 0                   | 0                    |
|        | •    | CCR<br>CAP1<br>EVENT<br>[3:0] | CCR<br>REF<br>EVENT<br>[3:0] | CCR<br>CAP<br>EVENT<br>[3:0] | BRK<br>EVENT | ETR<br>FE<br>EVENT | ETR<br>RE<br>EVENT | CNT<br>ARR<br>EVENT | CNT<br>ZERO<br>EVENT |

### Таблица 288 – Описание бит регистра STATUS

| №    | Функциональное            | Расшифровка функционального имени бита, краткое |             |                   |     |
|------|---------------------------|-------------------------------------------------|-------------|-------------------|-----|
| бита | имя бита                  | описание назна                                  | чения и при | нимаемых значений |     |
| 3117 | -                         |                                                 |             |                   |     |
| 1613 | CCR<br>CAP1<br>EVENT[3:0] | 0 –<br>1 –                                      | ;<br>O.     | CHxi              | :   |
|      |                           | 0 –<br>3 –                                      |             |                   |     |
| 129  | CCR<br>REF<br>EVENT[3:0]  | 0 - 1 -                                         | ;<br>0.     | REF               |     |
|      |                           | 0 –<br>3 –                                      |             |                   |     |
| 85   | CCR<br>CAP<br>EVENT[3:0]  | 0 –<br>1 –                                      | ;<br>0.     | CHxi              | :   |
|      |                           | 0 –<br>3 –                                      | ٠           |                   |     |
| 4    | BRK<br>EVENT              | 0 - BRK = 0;<br>1 - BRK = 1.                    | BRK,        |                   | LK: |
|      |                           |                                                 | 0,          | 0                 | BRK |
| 3    | ETR<br>FE<br>EVENT        | 0 - 1 -                                         | ;<br>O.     | ETR:              |     |
| 2    | ETR<br>RE<br>EVENT        | 0 –<br>1 –                                      | ;<br>0.     | ETR:              |     |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| №    | Функциональное | Расшифровка функционального имени бита, краткое |                                            |  |  |  |  |
|------|----------------|-------------------------------------------------|--------------------------------------------|--|--|--|--|
| бита | имя бита       | описание назначения и принимаемых значений      | описание назначения и принимаемых значений |  |  |  |  |
| 1    | CNT            | CNT ARR:                                        |                                            |  |  |  |  |
|      | ARR            | 0 – ;                                           |                                            |  |  |  |  |
|      | EVENT          | 1 – .                                           |                                            |  |  |  |  |
|      |                | 0.                                              |                                            |  |  |  |  |
|      |                | ,                                               |                                            |  |  |  |  |
|      |                |                                                 | CNT                                        |  |  |  |  |
|      |                | ARR ,                                           |                                            |  |  |  |  |
| 0    | CNT            | CNT :                                           |                                            |  |  |  |  |
|      | ZERO           | 0 – ;                                           |                                            |  |  |  |  |
|      | EVENT          | 1 – .                                           |                                            |  |  |  |  |
|      |                | 0.                                              |                                            |  |  |  |  |
|      |                | ,                                               |                                            |  |  |  |  |
|      |                |                                                 | CNT                                        |  |  |  |  |
|      |                | ,                                               |                                            |  |  |  |  |

# 22.7.13 MDR\_TIMERx->IE

# Таблица 289 – Регистр разрешения прерывания таймера ІЕ

| Номер  | 3117 | 1613                                | 129                                | 85                                 | 4                  | 3                        | 2                        | 1                         | 0                          |
|--------|------|-------------------------------------|------------------------------------|------------------------------------|--------------------|--------------------------|--------------------------|---------------------------|----------------------------|
| Доступ | U    | R/W                                 | R/W                                | R/W                                | R/W                | R/W                      | R/W                      | R/W                       | R/W                        |
| Сброс  | 0    | 0                                   | 0                                  | 0                                  | 0                  | 0                        | 0                        | 0                         | 0                          |
|        | ı    | CCR<br>CAP1<br>EVENT<br>IE<br>[3:0] | CCR<br>REF<br>EVENT<br>IE<br>[3:0] | CCR<br>CAP<br>EVENT<br>IE<br>[3:0] | BRK<br>EVENT<br>IE | ETR<br>FE<br>EVENT<br>IE | ETR<br>RE<br>EVENT<br>IE | CNT<br>ARR<br>EVENT<br>IE | CNT<br>ZERO<br>EVENT<br>IE |

# Таблица 290 – Описание бит регистра ІЕ

| No                 | Функциональное             | Расшифровка функционального имени бита, краткое |         |                      |      |  |  |
|--------------------|----------------------------|-------------------------------------------------|---------|----------------------|------|--|--|
| л <u>ч</u><br>бита | Функциональное<br>имя бита |                                                 |         | принимаемых значений |      |  |  |
|                    | имя онта                   | описание назна                                  | чения и | принимаемых значении |      |  |  |
| 3117               | -                          |                                                 |         |                      |      |  |  |
| 1613               | CCR                        |                                                 |         |                      |      |  |  |
| 1013               |                            | CHV                                             |         | ,                    |      |  |  |
|                    | CAP1                       | CHxi                                            |         | (                    |      |  |  |
|                    | EVENT                      |                                                 |         | CCR1):               |      |  |  |
|                    | IE [3:0]                   | 0 –                                             | ;       |                      |      |  |  |
|                    |                            | 1 –                                             |         | •                    |      |  |  |
|                    |                            | 0 —                                             | •       |                      |      |  |  |
|                    |                            | 3-                                              |         |                      |      |  |  |
| 129                | CCR                        |                                                 |         |                      |      |  |  |
|                    | REF                        | REF                                             |         | :                    |      |  |  |
|                    | <b>EVENT</b>               | 0 –                                             | ;       |                      |      |  |  |
|                    | IE[3:0]                    | 1 –                                             |         |                      |      |  |  |
|                    |                            | 0 –                                             |         |                      |      |  |  |
|                    |                            | 3-                                              |         |                      |      |  |  |
| 85                 | CCR                        |                                                 |         |                      |      |  |  |
|                    | CAP                        | CHxi                                            |         | (                    |      |  |  |
|                    | <b>EVENT</b>               |                                                 |         | CCR):                |      |  |  |
|                    | IE [3:0]                   | 0 –                                             | ;       |                      |      |  |  |
|                    |                            | 1 –                                             |         | •                    |      |  |  |
|                    |                            | 0 -<br>1 -<br>0 -                               | •       |                      |      |  |  |
|                    |                            | 3-                                              |         |                      |      |  |  |
| 4                  | BRK                        |                                                 |         | BRK,                 |      |  |  |
|                    | <b>EVENT</b>               |                                                 |         | PCLK:                |      |  |  |
|                    | IE                         | 0 —                                             | ;       |                      |      |  |  |
|                    |                            | 1 –                                             |         |                      |      |  |  |
| 3                  | ETR                        |                                                 |         |                      | ETR: |  |  |
|                    | FE                         | 0 —                                             | ;       |                      |      |  |  |
|                    | <b>EVENT</b>               | 1 –                                             |         |                      |      |  |  |
|                    | IE                         |                                                 |         |                      |      |  |  |
| 2                  | ETR                        |                                                 |         |                      |      |  |  |
|                    | RE                         | ETR:                                            |         |                      |      |  |  |
|                    | <b>EVENT</b>               | 0 –                                             | ;       |                      |      |  |  |
|                    | IE                         | 1 –                                             | •       |                      |      |  |  |

| Nº<br>€ | Функциональное | Расшифровка функционального имени бита, краткое |                        |             |  |
|---------|----------------|-------------------------------------------------|------------------------|-------------|--|
| бита    | имя бита       | описание                                        | назначения и принимаем | ых значении |  |
| 1       | CNT            |                                                 |                        | CNT         |  |
|         | ARR            | ARR:                                            |                        |             |  |
|         | EVENT          | 0 -                                             | ;                      |             |  |
|         | IE             | 1 –                                             |                        |             |  |
| 0       | CNT            |                                                 |                        | CNT         |  |
|         | ZERO           | :                                               |                        |             |  |
|         | EVENT          | 0 -                                             | ;                      |             |  |
|         | ΙE             | 1 –                                             |                        |             |  |

### 22.7.14 MDR\_TIMERx->DMA\_RE

Таблица 291 – Регистр DMA\_RE разрешения запросов DMA от прерываний таймера

|        |      | _               |                 |                 | -            |              |              |              | -            |
|--------|------|-----------------|-----------------|-----------------|--------------|--------------|--------------|--------------|--------------|
| Номер  | 3117 | 1613            | 129             | 85              | 4            | 3            | 2            | 1            | 0            |
| Доступ | U    | R/W             | R/W             | R/W             | R/W          | R/W          | R/W          | R/W          | R/W          |
| Сброс  | 0    | 0               | 0               | 0               | 0            | 0            | 0            | 0            | 0            |
|        |      | CCR             | CCR             | CCR             |              | ETR          | ETR          | CNT          | CNT          |
|        |      | CAP1            | REF             | CAP             | BRK          | FE           | RE           | ARR          | ZERO         |
|        | -    | <b>EVENT</b>    | <b>EVENT</b>    | <b>EVENT</b>    | <b>EVENT</b> | <b>EVENT</b> | <b>EVENT</b> | <b>EVENT</b> | <b>EVENT</b> |
|        |      | <b>RE</b> [3:0] | <b>RE</b> [3:0] | <b>RE</b> [3:0] | RE           | RE           | RE           | RE           | RE           |

Таблица 292 - Описание бит регистра DMA\_RE

| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |  |  |  |  |
|------|----------------|----------------------------------------------------------|--|--|--|--|
| бита | имя бита       | назначения и принимаемых значений                        |  |  |  |  |
| 3117 | -              |                                                          |  |  |  |  |
| 1613 | CCR            | DMA                                                      |  |  |  |  |
|      | CAP1           | CHxi (                                                   |  |  |  |  |
|      | <b>EVENT</b>   | CCR1):                                                   |  |  |  |  |
|      | RE [3:0]       | 0 – DMA;                                                 |  |  |  |  |
|      |                | 1 – DMA .                                                |  |  |  |  |
|      |                | 0 – .                                                    |  |  |  |  |
|      |                | 3-                                                       |  |  |  |  |
| 129  | CCR            | DMA                                                      |  |  |  |  |
|      | REF            | REF :                                                    |  |  |  |  |
|      | EVENT          | 0 – DMA;                                                 |  |  |  |  |
|      | RE[3:0]        | 1 – DMA .                                                |  |  |  |  |
|      |                | 0 – .                                                    |  |  |  |  |
|      |                | 3 –                                                      |  |  |  |  |
| 85   | CCR            | DMA                                                      |  |  |  |  |
|      | CAP            | CHxi (                                                   |  |  |  |  |
|      | EVENT          | CCR):                                                    |  |  |  |  |
|      | RE [3:0]       | 0 – DMA;                                                 |  |  |  |  |
|      |                | 1 – DMA .                                                |  |  |  |  |
|      |                | 0                                                        |  |  |  |  |
|      |                | 3-                                                       |  |  |  |  |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| №    | Функциональное | Расшифро  | вка функцио                       | нального имени бита, | краткое описание |  |  |  |
|------|----------------|-----------|-----------------------------------|----------------------|------------------|--|--|--|
| бита | имя бита       | назначени | назначения и принимаемых значений |                      |                  |  |  |  |
| 4    | BRK            |           |                                   | BRK,                 |                  |  |  |  |
|      | EVENT          | PCLK:     |                                   |                      |                  |  |  |  |
|      | RE             | 0 –       | DMA;                              |                      |                  |  |  |  |
|      |                | 1 –       | DMA                               |                      |                  |  |  |  |
| 3    | ETR            |           |                                   | DMA                  | ETR:             |  |  |  |
|      | FE             | 0 –       | DMA;                              |                      |                  |  |  |  |
|      | EVENT          | 1 –       | DMA                               |                      |                  |  |  |  |
|      | RE             |           |                                   |                      |                  |  |  |  |
| 2    | ETR            |           |                                   | DMA                  |                  |  |  |  |
|      | RE             | ETR:      |                                   |                      |                  |  |  |  |
|      | EVENT          | 0 —       | DMA;                              |                      |                  |  |  |  |
|      | RE             | 1 –       | DMA                               |                      |                  |  |  |  |
| 1    | CNT            |           |                                   | DMA                  | CNT              |  |  |  |
|      | ARR            | ARR:      |                                   |                      |                  |  |  |  |
|      | EVENT          | 0 –       | DMA;                              |                      |                  |  |  |  |
|      | RE             | 1 –       | DMA                               |                      |                  |  |  |  |
| 0    | CNT            |           |                                   | DMA                  | CNT              |  |  |  |
|      | ZERO           | :         |                                   |                      |                  |  |  |  |
|      | EVENT          | 0 —       | DMA;                              |                      |                  |  |  |  |
|      | RE             | 1 –       | DMA                               |                      |                  |  |  |  |

# 23 Контроллер MDR\_ADC

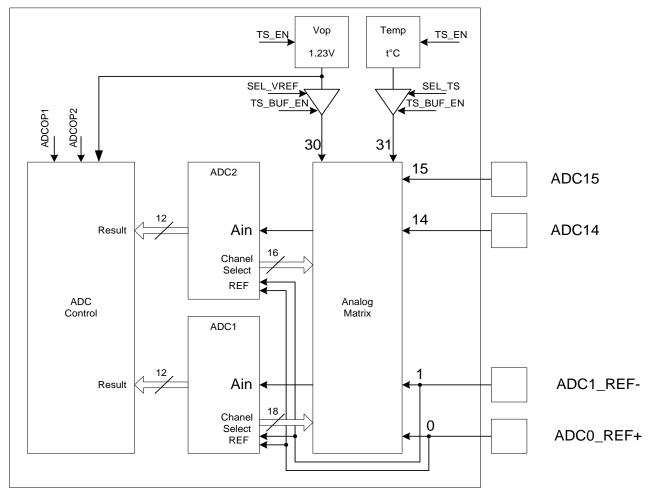



Рисунок 91. Структурная схема контроллера АЦП Cfg\_REG\_ADON.

# 23.1 Преобразование внешнего канала

ADCx\_CFG Cfg\_REG\_CHS[4:0]

 $\label{eq:cfg_M_REF} \begin{array}{lll} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ 

1 Cfg\_REG\_GO. Flg\_REG\_EOCIF

ADCx\_STATUS, ADCx\_RESULT

Flg\_REG\_EOCIF

ADCx\_RESULT

Flg\_REG\_EOCIF

FIg\_REG\_OVERWRITE.
ADCx STATUS.

Flg\_REG\_OVERWRITE

# 23.2 Последовательное преобразование нескольких каналов

ADCx\_CHSEL

 $Cfg_M_REF = 0$ 

 $Cfg_M_REF = 1.$ 

ADC0\_REF+ ADC1\_REF-.
SEL\_TS Cfg\_Sync\_Conver

Flg\_REG\_OVERWRITE

Cfg\_REG\_RNGC, TS\_BUF\_EN, SEL\_VREF, , Cfg\_REG\_SAMPLE Cfg\_REG\_CHCH

Delay\_GO

CPU\_CLK,

ADC\_CLK CPU\_CLK

1 Cfg\_REG\_GO.

Flg\_REG\_EOCIF

ADCx STATUS,

ADCx\_RESULT

Flg\_REG\_EOCIF

ADCx\_RESULT

Flg\_REG\_EOCIF

Flg\_REG\_OVERWRITE.

ADCx\_STATUS.

ADCx\_CHSEL

Cfg\_REG\_CHS[4:0]

Cfg\_REG\_CHCH 1, Cfg\_REG\_CHCH

23.3 Преобразование с контролем границ

ADCx\_L\_LEVEL

ADCx\_H\_LEVEL.

Cfg\_REG\_RNGC,

Flg\_REG\_AWOIFEN,

23.4 Внутренний источник опорного напряжения

( V<sub>OP</sub> 91).

TS\_EN 1.

ADCx OP

Cfg\_REG\_CHS

30

TS\_BUF\_EN SEL\_VREF,

> 1 Cfg\_REG\_GO.

> > Flg\_REG\_EOCIF

ADC1\_STATUS,

ADC1\_RESULT

Flg\_REG\_EOCIF

ADC1\_RESULT

Flg\_REG\_EOCIF

Flg\_REG\_OVERWRITE. Flg\_REG\_OVERWRITE ADC1\_STATUS.

30

Cfg\_REG\_CHCH 1,

ADC1\_CHSEL 30-Cfg\_REG\_CHS[4:0]

Cfg\_REG\_CHCH 0.

TS\_BUF\_EN SEL\_VREF.

23.5 Датчик температуры

TS\_EN

ADCx\_OP

Cfg\_REG\_CHS 31 TS\_BUF\_EN SEL\_TS,

1 Cfg\_REG\_GO.

Flg\_REG\_EOCIF

ADC1\_STATUS, ADC1\_RESULT

Flg\_REG\_EOCIF

ADC1\_RESULT

Flg\_REG\_EOCIF Flg\_REG\_OVERWRITE.

Flg\_REG\_OVERWRITE ADC1\_STATUS.

ADC1\_CHSEL 31 Cfg\_REG\_CHCH 1,

Cfg\_REG\_CHS[4:0] Cfg\_REG\_CHCH 0. 31-

TS\_BUF\_EN SEL\_TS.

Синхронный запуск двух АЦП 23.6

> Delay\_ADC. Delay\_ADC

CPU\_CLK, ADC\_CLK
CPU\_CLK .
Cfg\_Sync\_Conver
Cfg\_REG\_GO.

# 23.7 Время заряда внутренней емкости

```
R_{AIN}
                              R_{AIN} < (T_S/(f_{CADC} * C_{ADC} * ln(2^N))) - R_{ADC}
      T_{S}
      f_{C \, ADC}
                                             (\sim 15-20)
      C_{ADC}
      N
                                                         (~500).
      R_{ADC}
                                                                            12
                                                                                           ± 1/4 LSB,
                                                                              10
N = 14.
                                                                                             ± 1 LSB,
                                                           DelayGo[2:0]
N=10.
                          T_S =
```

293. DelayGo[2:0] CPU\_CLK, ADC\_CLK
CPU\_CLK .

Таблица 293 – Время заряда внутренней емкости АЦП и время преобразования

| DelayGo[2:0] | Дополнительная<br>задержка перед | Общее время Ts заряда емкости АЦП перед | Общее время<br>преобразования АЦП |
|--------------|----------------------------------|-----------------------------------------|-----------------------------------|
|              | началом                          | началом                                 |                                   |
|              | преобразования                   | преобразования                          |                                   |
| 000          | 1 x CPU_CLK                      | $4 \times CLK + 1 \times CPU\_CLK$      | 28 x CLK + 1 x CPU_CLK            |
| 001          | 2 x CPU_CLK                      | $4 \times CLK + 2 \times CPU\_CLK$      | 28 x CLK + 2 x CPU_CLK            |
| 010          | 3 x CPU_CLK                      | $4 \times CLK + 3 \times CPU\_CLK$      | 28 x CLK + 3 x CPU_CLK            |
| 011          | 4 x CPU_CLK                      | 4 x CLK + 4 x CPU_CLK                   | 28 x CLK + 4 x CPU_CLK            |
| 100          | 5 x CPU_CLK                      | 4 x CLK + 5 x CPU_CLK                   | 28 x CLK + 5 x CPU_CLK            |
| 101          | 6 x CPU_CLK                      | $4 \times CLK + 6 \times CPU\_CLK$      | 28 x CLK + 6 x CPU_CLK            |
| 110          | 7 x CPU_CLK                      | 4 x CLK + 7 x CPU_CLK                   | 28 x CLK + 7 x CPU_CLK            |
| 111          | 8 x CPU_CLK                      | 4 x CLK + 8 x CPU_CLK                   | 28 x CLK + 8 x CPU_CLK            |

E<sub>DLADC</sub>, E<sub>ILADC</sub> E<sub>OFFADC</sub>.

ADCx\_CFG

Cfg\_REG\_GO,

# 23.8 Описание регистров блока контроллера АЦП

Таблица 294 – Описание регистров блока контроллера АЦП

| Базовый Адрес | Название          | Описание              |
|---------------|-------------------|-----------------------|
| 0x4008_8000   | MDR_ADC           | ADC                   |
| Смещение      |                   |                       |
| 0x00          | MDR_ADC->ADC1_CFG | ADC1                  |
| 0x04          | MDR_ADC->ADC2_CFG | ADC2                  |
| 0x08          | ADC1_H_LEVEL      | MDR_ADC->ADCx_H_LEVEL |
|               |                   | ADC1                  |
| 0x0C          | ADC2_H_LEVEL      | MDR_ADC->ADCx_H_LEVEL |
|               |                   | ADC2                  |
| 0x10          | ADC1_L_LEVEL      | MDR_ADC->ADCx_L_LEVEL |
|               |                   | ADC1                  |
| 0x14          | ADC2_L_LEVEL      | MDR_ADC->ADCx_L_LEVEL |
|               |                   | ADC2                  |
| 0x18          | ADC1_RESULT       | MDR_ADC->ADCx_RESULT  |
|               |                   | ADC1                  |
| 0x1C          | ADC2_RESULT       | MDR_ADC->ADCx_RESULT  |
|               |                   | ADC2                  |
| 0x20          | ADC1_STATUS       | MDR_ADC->ADCx_STATUS  |
|               |                   | ADC1                  |
| 0x24          | ADC2_STATUS       | MDR_ADC->ADCx_STATUS  |
|               |                   | ADC2                  |
| 0x28          | ADC1_CHSEL        | MDR_ADC->ADCx_CHSEL   |
|               |                   | ADC1                  |
| 0x2C          | ADC2_CHSEL        | MDR_ADC->ADCx_CHSEL   |
|               |                   | ADC2                  |

### 23.8.1 MDR\_ADC->ADC1\_CFG

# Таблица 295 – Регистр ADC1\_CFG

| Номер  | 11     | 10   | 9    | 84       | 3      | 2    | 1   | 0    |
|--------|--------|------|------|----------|--------|------|-----|------|
| Доступ | R/W    | R/W  | R/W  | R/W      | R/W    | R/W  | R/W | R/W  |
| Сброс  | 0      | 0    | 0    | 0        | 0      | 0    | 0   | 0    |
|        | Cfg    | Cfg  | Cfg  | Cfg      | Cfg    | Cfg  | Cfg | Cfg  |
|        | M REF  | REG  | REG  | REG      | REG    | REG  | REG | REG  |
|        | MI_VEL | RNGC | CHCH | CHCIA.01 | SAMPLE | CLKS | GO  | ADON |

| Номер  | 3128                  | 2725                 | 2421    | 20          | 19        | 18           | 17    | 16                    | 1512                          |
|--------|-----------------------|----------------------|---------|-------------|-----------|--------------|-------|-----------------------|-------------------------------|
| Доступ | R/W                   | R/W                  | R/W     | R/W         | R/W       | R/W          | R/W   | R/W                   | R/W                           |
| Сброс  | 0                     | 0                    | 0       | 0           | 0         | 0            | 0     | 0                     | 0                             |
|        | Delay<br>ADC<br>[3:0] | Delay<br>Go<br>[2:0] | TR[3:0] | SEL<br>VREF | SEL<br>TS | TS_BUF<br>EN | TS_EN | Cfg<br>Sync<br>Conver | Cfg<br>REG<br>DIVCLK<br>[3:0] |

### Таблица 296 - Описание бит регистра ADC1\_CFG

|      | T               | Таолица 296 – Описание оит регистра ADC1_CFG             |
|------|-----------------|----------------------------------------------------------|
| No   | Функциональное  | Расшифровка функционального имени бита, краткое описание |
| бита | имя бита        | назначения и принимаемых значений                        |
| 3128 | Delay           | ADC1 ADC2                                                |
|      | ADC             | , :                                                      |
|      | [3:0]           | 0000 – 1 CPU_CLK;                                        |
|      |                 | 0001 – 2 CPU_CLK;                                        |
|      |                 | ****                                                     |
|      |                 | 1111 – 16                                                |
| 2725 | Delay           |                                                          |
|      | Go              | :                                                        |
|      | [2:0]           | 000 – 1 CPU_CLK;                                         |
|      |                 | $001 - 2$ CPU_CLK;                                       |
|      |                 | <br>111 – 8                                              |
|      | <b>TD 50</b> 03 | 111 - 6 CFU_CLK                                          |
| 2421 | TR[3:0]         |                                                          |
|      |                 | . 92                                                     |
| 20   | SEL             |                                                          |
|      | VREF            | 1,23 :                                                   |
|      |                 | 0- ;                                                     |
|      |                 | 1                                                        |
|      |                 | Cf. DEC CHG 20                                           |
| 10   | CEL             | $Cfg\_REG\_CHS = 30$                                     |
| 19   | SEL             | :                                                        |
|      | TS              | $\begin{bmatrix} 0 - & & ; \\ 1 - & & . \end{bmatrix}$   |
|      |                 | 1                                                        |
|      |                 | Cfg_REG_CHS = 31                                         |
| 18   | TS              | CIS_NLO_CIIS - J1                                        |
| 10   | BUF             |                                                          |
|      | EN              | 0- :                                                     |
|      | LilN            | 1-                                                       |
|      |                 | $TS\_EN = 1$                                             |
|      |                 | 15_EN - 1                                                |

| No   | Функциональное                |                                                                         |
|------|-------------------------------|-------------------------------------------------------------------------|
| бита | имя бита                      | назначения и принимаемых значений                                       |
| 17   | TS<br>EN                      | 0 — ;<br>1 — ;                                                          |
|      |                               | 1                                                                       |
| 16   | Cfg<br>Sync<br>Conver         | , Cfg_REG_DIVCLK, Cfg_REG_ADON, Cfg_M_REF Cfg_REG_CHS :                 |
|      |                               | 0 – ;<br>1 – ;                                                          |
| 1512 | Cfg<br>REG<br>DIVCLK<br>[3:0] | : 0000 - CPU_CLK; 0001 - CPU_CLK/2; 0010 - CPU_CLK/4; 0011 - CPU_CLK/8; |
|      |                               | 1011 - CPU_CLK/2048<br>- CPU_CLK                                        |
| 11   | Cfg<br>M_REF                  | :<br>0 - ( AU AGND);<br>1 - ( ADC0_REF+ ADC1_REF-)                      |
| 10   | Cfg<br>REG<br>RNGC            | 0 - ;<br>1 -                                                            |
| 9    | Cfg<br>REG<br>CHCH            | ;<br>0-<br>1-<br>;                                                      |
| 84   | Cfg<br>REG<br>CHS<br>[4:0]    | ;<br>00000 - 0 ;<br>00001 - 1 ;<br>11111 - 31                           |
| 3    | Cfg<br>REG<br>SAMPLE          | 0 - ;<br>1 - ;                                                          |
| 2    | Cfg<br>REG<br>CLKS            | CLK ADC:<br>0 - CPU_CLK;<br>1 - ADC_CLK                                 |
| 1    | Cfg<br>REG<br>GO              | "1" ,                                                                   |
| 0    | Cfg<br>REG<br>ADON            | 0 - ;<br>1 - ;                                                          |

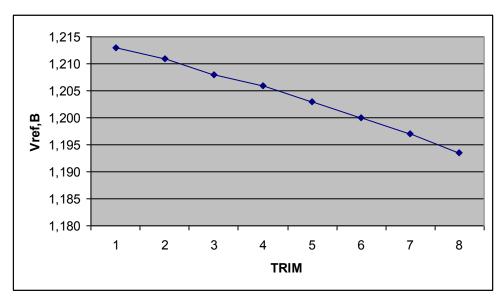



Рисунок 92. Зависимость источника опорного напряжения от подстройки

#### 23.8.2 MDR\_ADC->ADC2\_CFG

Таблица 297 – Регистр ADC2\_CFG

| Номер  | 11    | 10         | 9          | 84         | 3          | 2          | 1          | 0          |
|--------|-------|------------|------------|------------|------------|------------|------------|------------|
| Доступ | R/W   | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        |
| Сброс  | 0     | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
|        | Cfg   | Cfg<br>REG |
|        | M_REF | RNGC       | CHCH       |            | SAMPLE     |            | GO         | ADON       |

| Номер  | 3128 | 2725                 | 2419 | 18         | 17         | 16 | 1512                          |
|--------|------|----------------------|------|------------|------------|----|-------------------------------|
| Доступ | U    | R/W                  | U    | R/W        | R/W        | U  | R/W                           |
| Сброс  | 0    | 0                    | 0    | 0          | 0          | 0  | 0                             |
|        | -    | Delay<br>Go<br>[2:0] | -    | ADC2<br>OP | ADC1<br>OP | •  | Cfg<br>REG<br>DIVCLK<br>[3:0] |

Таблица 298 – Описание бит регистра ADC2\_CFG

| No   | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 3128 | 1              |                                                 |
| 2725 | Delay          |                                                 |
|      | Go             |                                                 |
|      | [2:0]          | :                                               |
|      |                | 000 – 1                                         |
|      |                | 001 – 2                                         |
|      |                | 111 0 CDU CLV                                   |
|      |                | 111 – 8 CPU_CLK                                 |
| 2419 | -              |                                                 |

| N₂   | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 18   | ADC2           | :                                               |
|      | OP             | 0 - ( );                                        |
|      |                | 1- ( ). TS                                      |
|      |                | EN 1                                            |
| 17   | ADC1           | :                                               |
|      | OP             | 0 – ( );                                        |
|      |                | 1- ( ). TS                                      |
|      |                | EN 1                                            |
| 16   | -              |                                                 |
| 1512 | Cfg            | :                                               |
|      | REG            | 0000 - CPU_CLK = HCLK;                          |
|      | DIVCLK         | $0001 - \text{CPU\_CLK} = \text{HCLK/2};$       |
|      | [3:0]          | 0010 - CPU_CLK = HCLK/4;                        |
|      | [8.0]          | 0011 - CPU_CLK = HCLK/8;                        |
|      |                |                                                 |
|      |                | 1011 – CPU_CLK = HCLK/2048                      |
|      |                | CPU_CLK = HCLK;                                 |
| 11   | Cfg            | · ·                                             |
| 11   | M_REF          | 0 – ( AU AGND);                                 |
|      | WI_KEF         |                                                 |
|      |                | , =                                             |
| 10   | CC-            | ADC1_REF-)                                      |
| 10   | Cfg            | ;                                               |
|      | REG            | 1 – ,                                           |
|      | RNGC           | ;                                               |
|      |                | 0 –                                             |
| 9    | Cfg            | :                                               |
|      | REG            | 0 – ;                                           |
|      | CHCH           | 1 – ( ,                                         |
|      |                | )                                               |
| 84   | Cfg            | ,                                               |
|      | REG            | :                                               |
|      | CHS            | 00000 - 0 ;                                     |
|      | [4:0]          | 00001 – 1 ;                                     |
|      |                | <br>11111 – 31                                  |
| 3    | Cfg            | :                                               |
|      | REG            | 0-;                                             |
|      | SAMPLE         | 1                                               |
|      |                |                                                 |
| 2    | Cfg<br>REG     | CLK ADC:                                        |
|      | REG            | 0 - CPU_CLK;                                    |
| 1    | CLKS           | 1 – ADC_CLK                                     |
| 1    | Cfg<br>REG     | "1"                                             |
|      | GO             | •                                               |
| 0    | Cfg            | •                                               |
|      | REG            | 0 – :                                           |
|      | ADON           | 1 — ,                                           |
|      | ADON           | 1 —                                             |

#### 23.8.3 MDR ADC->ADCx H LEVEL

#### Таблица 299 - Регистр ADCx\_H\_LEVEL

| Номер  | 3112 | 110                 |
|--------|------|---------------------|
| Доступ | U    | R/W                 |
| Сброс  | 0    | 0                   |
|        |      | REG H               |
|        | -    | <b>LEVEL</b> [11:0] |

#### Таблица 300 – Описание бит регистра ADCx\_H\_LEVEL

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|
| 3112      | -                          | пазна тення и принимаемых зна тенни                                                        |
| 110       | REG H                      |                                                                                            |
|           | LEVEL [11:0]               |                                                                                            |

#### 23.8.4 MDR\_ADC->ADCx\_L\_LEVEL

#### Таблица 301 – Регистр ADCx\_L\_LEVEL

| Номер  | 3112 | 110                   |
|--------|------|-----------------------|
| Доступ | U    | R/W                   |
| Сброс  | 0    | 0                     |
|        | -    | REG L<br>LEVEL [11:0] |

#### Таблица 302 – Описание бит регистра ADCx\_L\_LEVEL

| -    |                |                                                          |
|------|----------------|----------------------------------------------------------|
| No   | Функциональное | Расшифровка функционального имени бита, краткое описание |
| бита | имя бита       | назначения и принимаемых значений                        |
| 3112 | -              |                                                          |
| 110  | REG L          |                                                          |
|      | LEVEL [11:0]   |                                                          |

#### 23.8.5 MDR\_ADC->ADCx\_RESULT

#### Таблица 303 – Регистр ADCx\_RESULT

| Номер  | 3121 | 2016             | 1512 | 110              |
|--------|------|------------------|------|------------------|
| Доступ | U    | RO               | U    | RO               |
| Сброс  | 0    | 0                | 0    | 0                |
|        | -    | CHANNEL<br>[4:0] | -    | RESULT<br>[11:0] |

#### Таблица 304 – Описание бит регистра ADCx\_RESULT

| <b>№</b><br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|------------------|-------------------------|--------------------------------------------------------------------------------------------|
| 3121             | -                       |                                                                                            |
| 2016             | CHANNEL [11:0]          |                                                                                            |
| 1512             | -                       |                                                                                            |
| 110              | RESULT [11:0]           |                                                                                            |

#### 23.8.6 MDR\_ADC->ADCx\_STATUS

#### Таблица 305 – Регистр ADCx\_STATUS

| Номер  | 315 | 4           | 3           | 2                   | 1                     | 0                       |
|--------|-----|-------------|-------------|---------------------|-----------------------|-------------------------|
| Доступ | U   | R/W         | R/W         | R/W                 | R/W                   | R/W                     |
| Сброс  | 0   | 0           | 0           | 0                   | 0                     | 0                       |
|        | -   | EOCIF<br>IE | AWOIF<br>IE | Flg<br>REG<br>EOCIF | Flg<br>REG<br>AWOIFEN | Flg<br>REG<br>OVERWRITE |

#### Таблица 306 – Описание бит регистра ADCx\_STATUS

| No   | Функциональное  | альное Расшифровка функционального имени бита, краткое |  |  |  |
|------|-----------------|--------------------------------------------------------|--|--|--|
| бита | имя бита        | описание назначения и принимаемых значений             |  |  |  |
| 315  | -               |                                                        |  |  |  |
| 4    | EOCIF_IE        |                                                        |  |  |  |
|      | LOCH_IL         | Flg_REG_EOCIF:                                         |  |  |  |
|      |                 | Fig_REG_EOCIF.                                         |  |  |  |
|      |                 | ,                                                      |  |  |  |
|      | AWOTE TE        | 1 –                                                    |  |  |  |
| 3    | AWOIF_IE        |                                                        |  |  |  |
|      |                 | Flg_REG_AWOIFEN:                                       |  |  |  |
|      |                 | 0 – ;                                                  |  |  |  |
|      |                 | 1 –                                                    |  |  |  |
| 2    | Flg             | ,                                                      |  |  |  |
|      | REG             |                                                        |  |  |  |
|      | EOCIF           | ADCx_RESULT:                                           |  |  |  |
|      |                 | 1- ;                                                   |  |  |  |
|      |                 | 0 –                                                    |  |  |  |
| 1    | Flg             | ,                                                      |  |  |  |
|      | REG             |                                                        |  |  |  |
|      | AWOIFEN         |                                                        |  |  |  |
|      |                 | :                                                      |  |  |  |
|      |                 | 0 –                                                    |  |  |  |
|      |                 | 1 –                                                    |  |  |  |
| 0    | Flg             | ,                                                      |  |  |  |
|      | REG             |                                                        |  |  |  |
|      | OVERWRITE       | :                                                      |  |  |  |
|      | O , DIC, , IGID | 0 –                                                    |  |  |  |
|      |                 | 1 – ,                                                  |  |  |  |
|      |                 | ,                                                      |  |  |  |

#### 23.8.7 MDR\_ADC->ADCx\_CHSEL

#### Таблица 307 – Регистр ADCx CHSEL

|        | <u> </u>           |
|--------|--------------------|
| Номер  | 31 0               |
| Доступ | R/W                |
| Сброс  | 0                  |
|        | Sl_Ch_Ch_REF[31:0] |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

## Таблица 308 – Описание бит регистра ADCx\_CHSEL

| <b>№</b><br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |  |  |
|------------------|----------------------------|--------------------------------------------------------------------------------------------|--|--|
| 310              | Sl_Ch_Ch_REF[31:0]         | :                                                                                          |  |  |
|                  |                            | 0 – ;                                                                                      |  |  |
|                  |                            | 1 –                                                                                        |  |  |

# 24 Контроллер MDR\_DAC

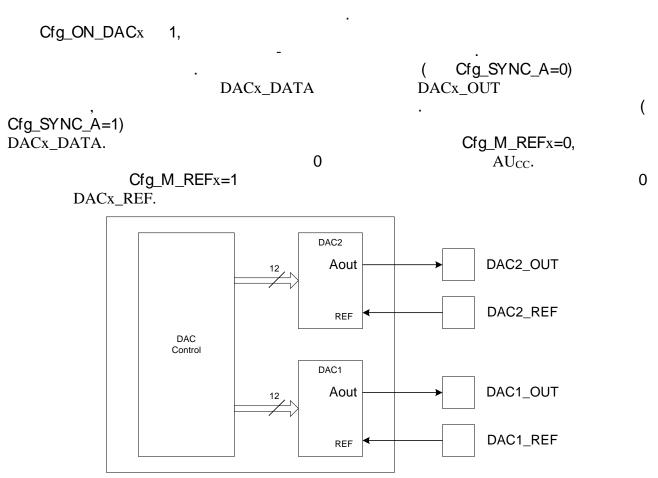



Рисунок 93. Структурная схема контроллера ЦАП

# 24.1 Описание регистров блока контроллера ЦАП

Таблица 309 – Описание регистров блока контроллера ЦАП

| Базовый Адрес | Название           | Описание |
|---------------|--------------------|----------|
| 0x4009_0000   | MDR_DAC            | DAC      |
| Смещение      |                    |          |
| 0x00          | MDR_DAC->CFG       | DAC      |
| 0x04          | MDR_DAC->DAC1_DATA | DAC1     |
| 0x08          | MDR_DAC->DAC2_DATA | DAC2     |

#### 24.1.1 MDR\_DAC->CFG

## Таблица 310 – Регистр CFG

| Номер  | 315 | 4      | 3       | 2       | 1      | 0      |
|--------|-----|--------|---------|---------|--------|--------|
| Доступ | U   | R/W    | R/W     | R/W     | R/W    | R/W    |
| Сброс  | 0   | 0      | 0       | 0       | 0      | 0      |
|        |     | Cfg    | Cfg     | Cfg     | Cfg    | Cfg    |
|        | -   | SYNC_A | ON_DAC1 | ON_DAC0 | M_REF1 | M_REF0 |

#### Таблица 311 – Описание бит регистра CFG

|      | Taominga 311 Onneanne on i pernerpa CI o |                                                 |  |  |
|------|------------------------------------------|-------------------------------------------------|--|--|
| No   | Функциональное                           | Расшифровка функционального имени бита, краткое |  |  |
| бита | имя бита                                 | описание назначения и принимаемых значений      |  |  |
| 315  | -                                        |                                                 |  |  |
| 4    | Cfg_SYNC_A                               | DAC1 DAC2:                                      |  |  |
|      |                                          | 0-;                                             |  |  |
|      |                                          | 1-                                              |  |  |
| 3    | Cfg_ON_DAC1                              | DAC2:                                           |  |  |
|      |                                          | 1- ;                                            |  |  |
|      |                                          | 0 –                                             |  |  |
| 2    | Cfg_ON_DAC0                              | DAC1:                                           |  |  |
|      |                                          | 1- ;                                            |  |  |
|      |                                          | 0 –                                             |  |  |
| 1    | Cfg_M_REF1                               | DAC2:                                           |  |  |
|      |                                          | 0 –                                             |  |  |
|      |                                          | AU <sub>CC</sub> ;                              |  |  |
|      |                                          | 1 –                                             |  |  |
|      |                                          | DAC2_REF                                        |  |  |
| 0    | Cfg_M_REF0                               | DAC1:                                           |  |  |
|      |                                          | 0 –                                             |  |  |
|      |                                          | AU <sub>CC</sub> ;                              |  |  |
|      |                                          | 1 –                                             |  |  |
|      |                                          | DAC1_REF                                        |  |  |

#### 24.1.2 MDR\_DAC->DAC1\_DATA

#### Таблица 312 – Регистр DAC1\_DATA

|        |      |                 |      | -               |
|--------|------|-----------------|------|-----------------|
| Номер  | 3128 | 2716            | 1512 | 110             |
| Доступ | U    | R/W             | U    | R/W             |
| Сброс  | 0    | 0               | 0    | 0               |
|        | -    | DAC1_DATA[11:0] | -    | DAC0_DATA[11:0] |

#### Таблица 313 – Описание бит регистра DAC1\_DATA

| <b>№</b><br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |               |           |
|------------------|-------------------------|--------------------------------------------------------------------------------------------|---------------|-----------|
| 3128             | -                       |                                                                                            |               |           |
| 2716             | DAC1                    | DAC1                                                                                       | Cfg_SYNC_A=1. |           |
|                  | DATA[11:0]              |                                                                                            |               | DAC2_DATA |
| 1512             | -                       |                                                                                            |               |           |
| 110              | DAC0                    | DAC0                                                                                       |               |           |
|                  | DATA[11:0]              |                                                                                            |               |           |

#### 24.1.3 MDR\_DAC->DAC2\_DATA

#### Таблица 314 – Регистр DAC2\_DATA

| Номер  | 3128 | 2716            | <b>15</b> 12 | 110             |
|--------|------|-----------------|--------------|-----------------|
| Доступ | U    | R/W             | U            | R/W             |
| Сброс  | 0    | 0               | 0            | 0               |
|        | -    | DAC0_DATA[11:0] | -            | DAC1_DATA[11:0] |

#### Таблица 315 – Описание бит регистра DAC21 DATA

| №<br>бита     | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |               |           |  |  |
|---------------|-------------------------|--------------------------------------------------------------------------------------------|---------------|-----------|--|--|
| 31 <b>2</b> 8 | -                       |                                                                                            |               |           |  |  |
| 2716          | DAC0                    | DAC0                                                                                       | Cfg_SYNC_A=1. |           |  |  |
|               | DATA[11:0]              |                                                                                            |               | DAC1_DATA |  |  |
| 1512          | -                       |                                                                                            |               |           |  |  |
| 110           | DAC1                    | DAC1                                                                                       |               |           |  |  |
|               | DATA[11:0]              |                                                                                            |               |           |  |  |

<u>Примечание</u> – Cfg\_SYNC\_A , DAC1 DAC2 DACx\_DATA.

# 25 Контроллер схемы компаратора MDR\_COMP

• ;

•

• IN1

ON 1,

Ready

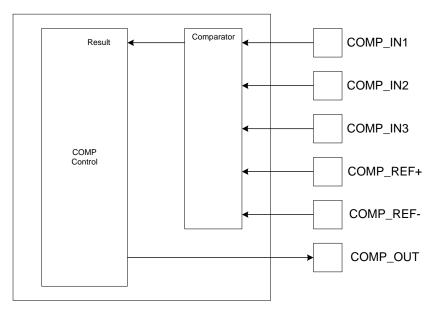
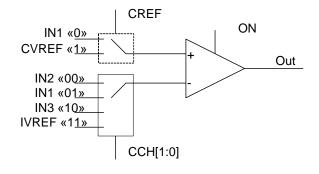




Рисунок 94. Структура блока компаратора



\*IVREF – 1,2 Рисунок 95. Структура мультиплексирования входов компаратора

#### 25.1 Сравнение внешних сигналов

# 25.2 Сравнение сигнала с внутренним источником опорного напряжения

# 25.3 Сравнение внешних сигналов с внутренней шкалой напряжений

# 25.4 Формирование внутренней шкалы напряжений

( 96), CVREN=1.

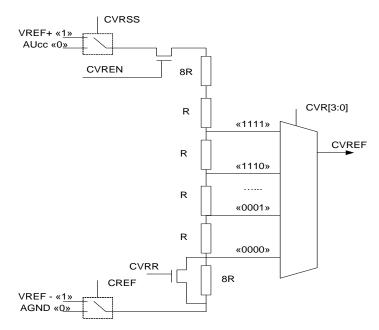
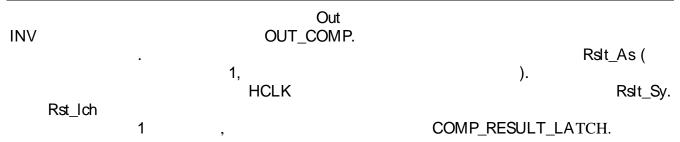




Рисунок 96. Структура блока формирования CVREF

$$AU_{CC} \ (CVRSS = 0), \\ COMP_VREF+ \ (CVRSS = 1). \\ COMP_VREF-. \\ CVREF \\ 316, \\ .$$

Таблица 316 – Формирование внутренней шкалы напряжений CVREF

| CVRR | CVR[3:0] | Отношение <b>резисторов</b> | Напряжение CREF<br>при Ucc=3.3 B, B | Входной импеданс<br>VREF+, Ом | Примечание |
|------|----------|-----------------------------|-------------------------------------|-------------------------------|------------|
|      | 0000     | 8/32                        | 0.83                                | 12K                           |            |
|      | 0001     | 9/32                        | 0.93                                | 13K                           |            |
|      | 0010     | 10/32                       | 1.03                                | 13.8K                         |            |
|      | 0011     | 11/32                       | 1.13                                | 14.4K                         |            |
|      | 0100     | 12/32                       | 1.24                                | 15K                           |            |
|      | 0101     | 13/32                       | 1.34                                | 15.4K                         |            |
|      | 0110     | 14/32                       | 1.44                                | 15.8K                         |            |
| 0    | 0111     | 15/32                       | 1.55                                | 15.9K                         |            |
| U    | 1000     | 16/32                       | 1.65                                | 16K                           |            |
|      | 1001     | 17/32                       | 1.75                                | 15.9K                         |            |
|      | 1010     | 18/32                       | 1.86                                | 15.8K                         |            |
|      | 1011     | 19/32                       | 1.96                                | 15.4K                         |            |
|      | 1100     | 20/32                       | 2.06                                | 15K                           |            |
|      | 1101     | 21/32                       | 2.17                                | 14.4K                         |            |
|      | 1110     | 22/32                       | 2.27                                | 13.8K                         |            |
|      | 1111     | 23/32                       | 2.37                                | 12.9K                         |            |
|      | 0000     | 0/24                        | 0.00                                | 0.5K                          |            |
|      | 0001     | 1/24                        | 0.14                                | 1.9K                          |            |
|      | 0010     | 2/24                        | 0.28                                | 3.7K                          |            |
|      | 0011     | 3/24                        | 0.41                                | 5.3K                          |            |
|      | 0100     | 4/24                        | 0.55                                | 6.7K                          |            |
|      | 0101     | 5/24                        | 0.69                                | 7.9K                          |            |
|      | 0110     | 6/24                        | 0.83                                | 9K                            |            |
| 1    | 0111     | 7/24                        | 0.96                                | 9.9K                          |            |
|      | 1000     | 8/24                        | 1.10                                | 10.7K                         |            |
|      | 1001     | 9/24                        | 1.24                                | 11.3K                         |            |
|      | 1010     | 10/24                       | 1.38                                | 11.7K                         |            |
|      | 1011     | 11/24                       | 1.51                                | 11.9K                         |            |
|      | 1100     | 12/24                       | 1.65                                | 12K                           |            |
|      | 1101     | 13/24                       | 1.79                                | 11.9K                         |            |
|      | 1110     | 14/24                       | 1.93                                | 11.7K                         |            |
|      | 1111     | 15/24                       | 2.06                                | 11.3K                         |            |



### 25.5 Описание регистров блока контроллера компаратора

Таблица 317- Описание регистров блока контроллера компаратора

| Базовый Адрес | Название               | Описание |
|---------------|------------------------|----------|
| 0x4009_8000   | MDR_COMP               |          |
| Смещение      |                        |          |
| 0x00          | MDR_COMP->CFG          |          |
| 0x04          |                        |          |
|               | MDR_COMP->RESULT       |          |
| 0x08          | MDR_COMP->RESULT_LATCH | -        |
|               |                        |          |

#### 25.5.1 MDR\_COMP->CFG

#### Таблица 318 – Регистр CFG

| Номер  | 3114 | 13        | 12    | 11  | 109          | 8    | 74           | 3         | 2     | 1    | 0   |
|--------|------|-----------|-------|-----|--------------|------|--------------|-----------|-------|------|-----|
| Доступ | U    | R/W       | RO    | R/W | R/W          | R/W  | R/W          | R/W       | R/W   | R/W  | R/W |
| Сброс  | 0    | 0         | 0     | 0   | 0            | 0    | 0            | 0         | 0     | 0    | 0   |
|        | -    | CMP<br>IE | Ready | INV | CCH<br>[1:0] | CREF | CVR<br>[3:0] | CVR<br>EN | CVRSS | CVRR | ON  |

#### Таблица 319 - Описание бит регистра CFG

| №    | Функциональное | Расшифровка функциона.   | льного имени бита, краткое |
|------|----------------|--------------------------|----------------------------|
| бита | имя бита       | описание назначения и пр | инимаемых значений         |
| 3114 | -              |                          |                            |
| 13   | CMP            |                          | Rst_lch:                   |
|      | IE             | 0 —                      | •                          |
|      |                | 1 —                      |                            |
| 12   | Ready          |                          | :                          |
|      |                | 0 —                      | <b>;</b>                   |
|      |                | 1 –                      |                            |
| 11   | INV            |                          | :                          |
|      |                | 0 — ;                    |                            |
|      |                | 1 –                      |                            |
| 109  | ССН            |                          | :                          |
|      | [1:0]          | 00 - «-»                 | IN2;                       |
|      |                | 01 — «-»<br>10 — «-»     | IN1;<br>IN3;               |
|      |                | 11 – «-»                 | 11(3,                      |
|      |                |                          | 1.2 (IVREF).               |
| 8    | CREF           |                          | :                          |
|      |                | 0 <b>- «+»</b>           | IN1;                       |
|      |                | 1 – «+»                  | CREF                       |
| 74   | CVR            | 216                      | CVREF.                     |
|      | [3:0]          | . 316                    |                            |
| 3    | CVREN          |                          | CVREF:                     |
|      |                | 0 – ;<br>1 – ;           |                            |

#### Спецификация микросхем серии 1986ВЕ9ху, К1986ВЕ9ху, К1986ВЕ9хуК, К1986ВЕ92QI, К1986ВЕ92QC, 1986ВЕ91Н4, К1986ВЕ91Н4, 1986ВЕ94Н4, К1986ВЕ94Н4

| No   | Функциональное | Расшифр  | Расшифровка функционального имени бита, краткое |             |  |
|------|----------------|----------|-------------------------------------------------|-------------|--|
| бита | имя бита       | описание | описание назначения и принимаемых значений      |             |  |
| 2    | CVRSS          |          | CVREF:                                          |             |  |
|      |                | 0 –      | CVREF                                           | AVdd AGND;  |  |
|      |                | 1 -      | CVREF                                           | Vref+ Vref- |  |
| 1    | CVRR           |          | CVREF:                                          |             |  |
|      |                | 0 –      | CVREF                                           | • •         |  |
|      |                | 1 -      | CVREF                                           |             |  |
| 0    | ON             |          | :                                               |             |  |
|      |                | 0 –      | ;                                               |             |  |
|      |                | 1 -      | ,                                               |             |  |

#### 25.5.2 MDR\_COMP->RESULT

#### Таблица 320 - Регистр RESULT

| Номер  | 313 | 2       | 1       | 0       |
|--------|-----|---------|---------|---------|
| Доступ | U   | R/W     | R/W     | R/W     |
| Сброс  | 0   | 0       | 0       | 0       |
|        | •   | Rst_lch | Rslt_As | Rslt_Sy |

#### Таблица 321 - Описание бит регистра RESULT

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|
| 313       | -                       |                                                                                            |
| 2         | Rst_lch                 | COMP_RESULT_LATCH, .                                                                       |
| 1         | Rslt_As                 |                                                                                            |
| 0         | Rslt_Sy                 | HCLK ,                                                                                     |

#### 25.5.3 MDR\_COMP->RESULT\_LATCH

#### Таблица 322 – Регистр RESULT\_LATCH

| Номер  | 311 | 0       |
|--------|-----|---------|
| Доступ | U   | R/W     |
| Сброс  | 0   | 0       |
|        | •   | Rst_lch |

#### Таблица 323 – Описание бит регистра RESULT\_LATCH

| <u>№</u><br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |  |
|------------------|-------------------------|--------------------------------------------------------------------------------------------|--|
| 311              | -                       |                                                                                            |  |
| 0                | Rst_lch                 | COMP_RESULT_LATCH, .                                                                       |  |

# 26 Контроллер интерфейса MDR\_I2C

```
I2C
                                    12C
                                                              I2C
1986
     9
                                    Master.
                            3
                        100 Kbps (DIV=150
                                               HCLK=80
                                                              );
                        400 Kbps (DIV=25
                                               HCLK=80
                                                             ):
                       : 1 Mbps (DIV=1 HCLK=80 ).
                                       12C
                         Fscl = HCLK/(5*(DIV+1)).
             Конфигурация системы
     26.1
     I2C
                                                                    SDA
        SCL.
                                                                                      SDA
                             SCL.
                                                                 SCL
                                                     SDA
                                                                                SCL
                                    START» «
                                                       STOP»).
             Протокол І2С
     26.2
                                         I2C
                START;
                STOP.
                /A7 \ A6 \ A5 \ X A4 \ X A3 \ X A2 \ X A1 \ XRW \ ACK \ D7 \ X D6 \ X D5 \ X D4 \ X D3 \ X D2 \ X D1 \ X D0 \ XNACK\
```

Рисунок 97. Передача по I2C

#### 26.3 Сигнал START

```
(
                 SCL
                       SDA
                                                START
                                                          S
                           START
               SDA
                                                                        SCL.
               START
                    START
                                                  START,
                              STOP.
(
                                     )
                                                                      START
                                        START
       I2C_CMD
                                     RD
                                            WR.
SCL
                        START,
                                                  START.
    26.4
          Передача адреса
                                                              START,
                 7-
                                                       RW.
                                                               RW
                                   ACK
                                                      SDA
                                                                          9-
 SCL
                                                10-
                  I2C_TXD
                                          WR
                                                         I2C CMD.
    26.5
          Передача данных
                                                 RW
                              ACK
                                      9-
                                          SCL
                NACK (
                                      ),
STOP
                                                 START
                                                    NACK,
               SDA
                                                    STOP
START.
                                                                  I2C_TXD
              WR.
                                                                RD.
                                                   TR_PROG
                                                                    I2C_STA.
                                                            INT.
                       INT_EN,
       I2C_RXD
                                                                        INT.
                                                                    TR_PROG
```

#### 26.6 Сигнал STOP

STOP. STOP P
, SCL

**SDA** 

# 26.7 Описание регистров контроллера I2C

#### Таблица 324 – Описание регистров контроллера I2С

| Базовый Адрес | Название     | Описание |
|---------------|--------------|----------|
| 0x4005_0000   | MDR_I2C      | I2C      |
| Смещение      |              |          |
| 0x00          | MDR_I2C->PRL |          |
| 0x04          | MDR_I2C->PRH |          |
| 0x08          | MDR_I2C->CTR | I2C      |
| 0x0C          | MDR_I2C->RXD | 12       |
| 0x10          | MDR_I2C->STA | I2C      |
| 0x14          | MDR_I2C->TXD | I2C      |
| 0x18          | MDR_I2C->CMD | 12       |

#### 26.7.1 MDR\_I2C->PRL

#### Таблица 325 – Регистр PRL

| Номер  | 318 | 7 0     |
|--------|-----|---------|
| Доступ | U   | R/W     |
| Сброс  | 0   | 0       |
|        | •   | PR[7:0] |

#### Таблица 326 - Описание бит регистра PRL

| №    | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 318  | -              |                                                 |
| 70   | PR[7:0]        |                                                 |

#### 26.7.2 MDR\_I2C->PRH

#### Таблица 327 – Регистр PRH

| Номер  | 318 | 7 0      |
|--------|-----|----------|
| Доступ | U   | R/W      |
| Сброс  | 0   | 0        |
|        | -   | PR[15:8] |

#### Таблица 328 – Описание бит регистра PRH

| №    | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 318  | -              |                                                 |
| 70   | PR[15:8]       |                                                 |

#### 26.7.3 MDR\_I2C->CTR

#### Таблица 329 - Регистр CTR

| Номер  | 318 | 7      | 6      | 5     | 40 |
|--------|-----|--------|--------|-------|----|
| Доступ | U   | R/W    | R/W    | R/W   | U  |
| Сброс  | 0   | 0      | 0      | 0     | 0  |
|        | -   | EN_I2C | EN_INT | S_I2C | -  |

### Таблица 330 – Описание бит регистра CTR

| <b>№</b><br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|------------------|-------------------------|--------------------------------------------------------------------------------------------|
| 318              | -                       |                                                                                            |
| 7                | EN_I2C                  | I2C:                                                                                       |
|                  |                         | 0 – ;                                                                                      |
|                  |                         | 1 –                                                                                        |
| 6                | EN_INT                  | I2C:                                                                                       |
|                  |                         | 0 – ;                                                                                      |
|                  |                         | 1 –                                                                                        |
| 5                | S_I2C                   | 12 :                                                                                       |
|                  |                         | 0 – 400 ;                                                                                  |
|                  |                         | 1 – 1                                                                                      |
| 40               | -                       |                                                                                            |

#### 26.7.4 MDR I2C->RXD

### Таблица 331 – Регистр RXD

| Номер  | 318 | 7 0      |
|--------|-----|----------|
| Доступ | U   | R/W      |
| Сброс  | 0   | 0        |
|        | •   | RXD[7:0] |

### Таблица 332 – Описание бит регистра RXD

| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |  |  |
|------|----------------|----------------------------------------------------------|--|--|
| бита | имя бита       | назначения и принимаемых значений                        |  |  |
| 318  | -              |                                                          |  |  |
| 70   | RXD[7:0]       | I2C                                                      |  |  |

#### 26.7.5 MDR\_I2C->STA

|        |     |     |      | Таблица 333 – Регистр STA |    |      |      |  |
|--------|-----|-----|------|---------------------------|----|------|------|--|
| Номер  | 318 | 7   | 6    | 5                         | 42 | 1    | 0    |  |
| Доступ | U   | R/W | R/W  | R/W                       | U  | R/W  | R/W  |  |
| Сброс  | 0   | 0   | 0    | 0                         | 0  | 0    | 0    |  |
|        | _   | Rx  | BUSY | LOST                      |    | TR   | INT  |  |
|        | •   | ACK | DUST | ARB                       | -  | PROG | 1111 |  |

#### Таблица 334 - Описание бит регистра STA

| No   | Функциональное | Расшифровка функционального имени бита, краткое |  |  |  |  |
|------|----------------|-------------------------------------------------|--|--|--|--|
| бита | имя бита       | описание назначения и принимаемых значений      |  |  |  |  |
| 318  | -              |                                                 |  |  |  |  |
| 7    | Rx             | ACK:                                            |  |  |  |  |
|      | ACK            | 0-ACK ;                                         |  |  |  |  |
|      |                | 1 – NACK                                        |  |  |  |  |
| 6    | BUSY           | I2C:                                            |  |  |  |  |
|      |                | 0 – Stop bit;                                   |  |  |  |  |
|      |                | 1 – Start bit                                   |  |  |  |  |
| 5    | LOST           | :                                               |  |  |  |  |
|      | ARB            | 0 – ;                                           |  |  |  |  |
|      |                | 1 – .                                           |  |  |  |  |
|      |                | :                                               |  |  |  |  |
|      |                | - Stop bit,                                     |  |  |  |  |
|      |                | ;                                               |  |  |  |  |
|      |                | - SDA ,                                         |  |  |  |  |
|      |                | SDA                                             |  |  |  |  |
| 42   | -              |                                                 |  |  |  |  |
| 1    | TR             | :                                               |  |  |  |  |
|      | PROG           | 0 — ;                                           |  |  |  |  |
|      |                | 1 –                                             |  |  |  |  |
| 0    | INT            | ,                                               |  |  |  |  |
|      |                | , EN_INT:                                       |  |  |  |  |
|      |                | 0 - ;                                           |  |  |  |  |
|      |                | 1                                               |  |  |  |  |
|      |                | :                                               |  |  |  |  |
|      |                | ;                                               |  |  |  |  |
|      |                | -                                               |  |  |  |  |

#### 26.7.6 MDR\_I2C->TXD

### Таблица 335 – Регистр TXD

| Номер  | 318 | 7 0      |
|--------|-----|----------|
| Доступ | U   | R/W      |
| Сброс  | 0   | 0        |
|        | -   | TXD[7:0] |

#### Таблица 336 – Описание бит регистра TXD

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |   |  |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|---|--|--|
| 318       | -                       |                                                                                            |   |  |  |
| 70        | TXD[7:0]                | I2C.                                                                                       |   |  |  |
|           |                         | 0 — ;<br>1 — ;                                                                             | • |  |  |

#### 26.7.7 MDR\_I2C->CMD

### Таблица 337 – Регистр СМО

| Номер  | 318 | 7     | 6    | 5   | 4   | 3   | 21 | 0          |
|--------|-----|-------|------|-----|-----|-----|----|------------|
| Доступ | U   | R/W   | R/W  | R/W | R/W | R/W | U  | R/W        |
| Сброс  | 0   | 0     | 0    | 0   | 0   | 0   | 0  | 0          |
|        | -   | START | STOP | RD  | WR  | ACK | -  | CLR<br>INT |

#### Таблица 338 – Описание бит регистра СМD

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |  |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|--|--|
| 318       | -                       |                                                                                            |  |  |
| 7         | START                   | START bit. 1.                                                                              |  |  |
| 6         | STOP                    | STOP bit.  1.                                                                              |  |  |
| 5         | RD                      | ;<br>0 - ;<br>1 - ;                                                                        |  |  |
| 4         | WR                      | 0 - ;<br>1 - ;                                                                             |  |  |
| 3         | ACK                     | ACK :<br>0 - ACK;<br>1 - NACK                                                              |  |  |
| 21        | -                       |                                                                                            |  |  |
| 0         | CLR<br>INT              | INT.<br>1                                                                                  |  |  |

# 27 Контроллер MDR\_SSP

```
(SSP - Synchronous Serial Port)
             SPI
                        Motorola;
             SSI
                        Texas Instruments;
             Microwire
                             National Semiconductor.
                                                  SSP
                                                          FIFO
          16-
                                  )
                    FIFO
                                           16-
                                    (
                                                                    ).
                                     FIFO
                      FIFO
                          FIFO
                            SPI;
                            Microwire;
                            SSI.
27.1
       Основные характеристики модуля SSP
                                                  (8
                                                            16
              FIFO (First In First Out -
                                                 : SPI, Microwire, SSI;
                                                            16
                                               FIFO
                                                                       FIFO
                                    (DMA).
                                                       98.
27.2
       Программируемые параметры
                              16
```

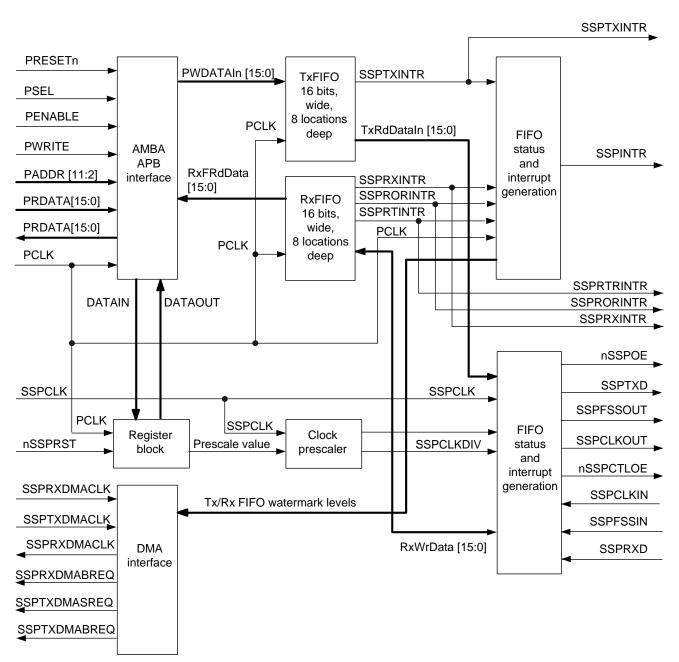



Рисунок 98. Структурная схема модуля SSP

#### 27.3 Характеристики интерфейса SPI

SPI Motorola :

# 27.4 Характеристики интерфейса Microwire

Microwire National Semiconductor : 8-

# 27.5 Характеристики интерфейса SSI

```
SSI
                        Texas Instruments
                                                                                )
           Общий обзор модуля SSP
    27.6
            SSP
                                         SPI
                                                  Motorola, Microwire
                                                                          National
Semiconductor,
                   SSI
                             Texas Instruments.
                                                             FIFO,
                                             16
                                                 SSP_TXD
SSP_RXD.
            SSP
                                                                SSPCLK.
                      SSP CLK
                                      2
                                                                       SSPCLK
                                               CR0 CR1.
          SSPTXINTR -
          SSPRXINTR -
                                                    FIFO:
          SSPRORINTR -
          SSPRTINTR -
                                                                 FIFO.
                                                    SSPINTR,
                NVIC.
                                                                       (DMA)
                              DMA.
                                                 SSPFSSOUT
                                 SSI.
                                                                       ),
                                 SPI
                                     Microwire,
                                                                               ).
```

#### 27.6.1 Блок формирования тактового сигнала

SSP\_CLK SSPCPSR 2 254 2. ). SSP\_CLK. 1 256, SSPCR0. 27.6.2 Буфер FIFO передатчика 16 8 FIFO – « 27.6.3 Буфер FIFO приемника 16 FIFO - « 27.6.4 Блок приема и передачи данных SSP\_CLK SSPCLK. FIFO SSP\_CLK, SSP\_TXD **FIFO** SSP\_RXD, SSP\_CLK. FIFO, SSP\_TXD. SSP\_RXD SSP\_CLK, **FIFO** 

#### 27.6.5 Блок формирования прерываний

SSP

NVIC,

27.6.6 Интерфейс прямого доступа к памяти

DMA

DMA.

27.6.7 Конфигурирование приемопередатчика

(SPI Motorola, SSI Texas Instruments,

Microwave National Semiconductor), CR0 CR1.

SSPCLK

PSR.

27.6.8 Разрешение работы приемопередатчика

SSE CR1.

FIFO 16-

SSP\_TXD SSP\_RXD.

27.6.9 Соотношения между тактовыми сигналами

CPU\_CLK SSPCLK. SSPCLK CPU\_CLK.

SSPCLK CPU\_CLK

FSSPCLK <= FPCLK.

SSP\_CLK

SSP\_CLK, SSP\_CLK.

SSP\_TXD SSP\_CLK,

SSP\_RXD SSP\_CLK

```
SSPCLK
                                    12
             SSP_CLK.
                                 SSPCLK
                                                                    SSPCLK
                          SSP_CLK
                                                                  12,
1,8432
                         SSPCLK
                                                       3,6864
                                       2,
                                                              CR0
                                               SCR[7:0]
                                                          22.12
                                   SSPCLK
                                               SCR[7:0]
      CPSR
                                      12,
                                                              CR0
           0.
                                                 SSPCLK
SSPCLKOUT
                  254 * 256.
                                        SSPCLK
        FSSPCLK(min) => 2 x FSSPCLKOUT(max) [for master mode]
        FSSPCLK(min) => 12 x FSSPCLKIN(max) [for slave mode].
                                                 SSPCLK
        FSSPCLK(max) <= 254 x 256 x FSSPCLKOUT(min) [for master mode]</pre>
        FSSPCLK(max) \le 254 \times 256 \times FSSPCLKIN(min) [for slave mode].
    27.6.10 Программирование регистра управления CR0
           CR0
SSPCLK
                       SCR (Serial Clock Rate -
       SSPCR0
                               CPSDVSR (clock prescale divisor value -
                             SSPCPSR.
                                                                 FRF,
                                      DSS
                                                 SSPCR0.
                SPI
                          Motorola
                                                                         SPH
 SPO).
    27.6.11 Программирование регистра управления CR1
           SSPCR1
```

```
0
                                                           MS
                                                                       SSPCR1 (
                                              ).
                 MS
         1
                                                                         SSP_TXD
                                 SOD (slave mode SSP_TXD output disable -
SSP_TXD
                                    CR1.
                           )
1
    SSE (Synchronous Serial Port Enable -
                                                                                ).
    27.6.12 Формирование тактового сигнала обмена данными
SSPCLK.
                               2
CPSDVSR,
                                    254,
CPSR.
                                                                              (1 +
                          SCR
                                                                CR0.
SCR) 1
           256,
                                                            SSP_CLK
         FSSPCLKOUT = FSSPCLK / (CPSDVR * (1+SCR)).
                                          SSPCLK
                                                             3.6864
CPSDVSR = 2,
                          SSP CLK
                                                      7.2
                                                               1.8432
    27.6.13 Формат информационного кадра
          4
               16 .
                Texas Instruments;
    - SSI
    - SPI
                Motorola;

    Microwire

                      National Semiconductor.
                                                       SSP_CLK
                                                                       SSP CLK
                SPI
                      Microwire
SSP_FSS
                                SSI
                                           Texas Instruments
                               SSP FSS
                                                                         SSP.
       SSP CLK,
                                                         SSI
                                                               SPI,
                                                                         Microwire
       National Semiconductor
```

8-

4 16 13 25 .

#### 27.6.14 Формат синхронного обмена SSI фирмы Texas Instruments

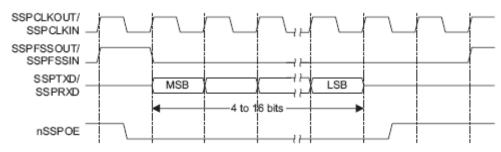



Рисунок 99. Формат синхронного обмена протокола SSI (единичный обмен)

SSP SSP\_CLK SSP\_FSS SSP\_TXD

FIFO SSP\_FSS

SSP\_CLK.

FIFO SSP\_CLK

SSP\_CLK

SSP\_TXD

SSP\_TXD

SSP\_TXD

SSP\_TXD

SSP\_CLK. FIFO SSP\_CLK. SSI

00

Texas Instruments : 99 -

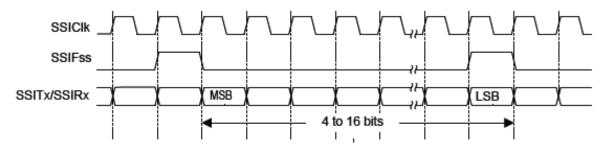
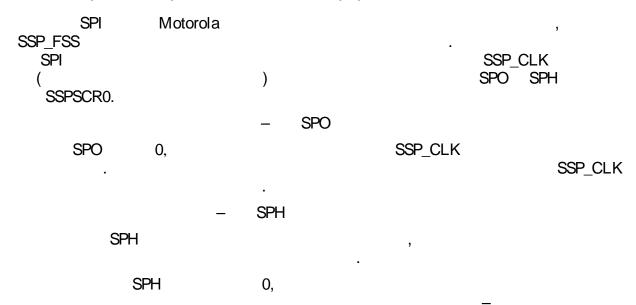




Рисунок 100. Формат синхронного обмена протокола SSI (непрерывный обмен)

#### 27.6.15 Формат синхронного обмена SPI фирмы Motorola



#### 27.6.16 Формат синхронного обмена SPI фирмы Motorola, SPO=0, SPH=0

SPI SPO=0, SPH=0 : 101 - 102 -

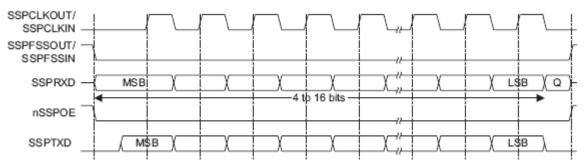



Рисунок 101. Формат синхронного обмена протокола SPI, SPO=0, SPH=0 (одиночный обмен)

<u>Примечание</u> – Q

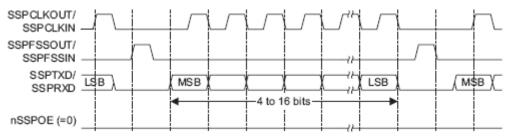



Рисунок 102. Формат синхронного обмена протокола SPI, SPO=0, SPH=0 (непрерывный обмен)

- SSP\_CLK

- SSP\_FSS

SSP\_TXD

FIFO

SSP\_FSS

SSP\_RXD . SSPTXD

SSP\_CLK SSP\_TXD

SSP CLK

SSP\_CLK.

SSP\_FSS

SSP\_CLK.

SSP\_FSS

SPH=0

SSP FSS

SSP FSS

SSP\_CLK.

#### 27.6.17 Формат синхронного обмена SPI фирмы Motorola, SPO=0, SPH=1

SPI SPO=0,

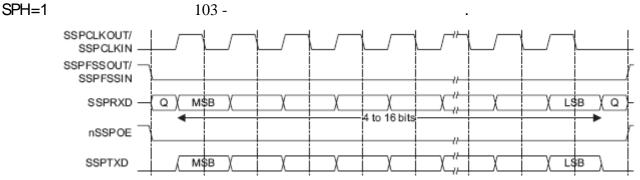



Рисунок 103. Формат синхронного обмена протокола SPI, SPO=0, SPH=1

<u>Примечание</u> – Q

- SSP\_CLK
- SSP\_FSS
- SSP\_TXD

**FIFO** 

SSP\_FSS

SSP RXD . SSPTXD

SSP\_CLK

SSP\_CLK

SSP\_CLK.

SSP\_FSS

SSP\_CLK.

SSP\_FSS

#### 27.6.18 Формат синхронного обмена SPI фирмы Motorola, SPO=1, SPH=0

SPI SPO=1,

SPH=0 : 104 - 105 -

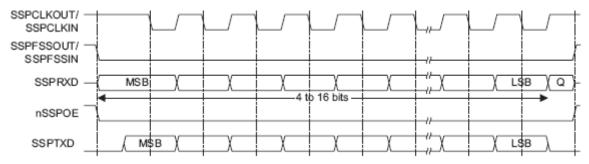



Рисунок 104. Формат синхронного обмена протокола SPI, SPO=1, SPH=0 (одиночный обмен)

Примечание - Q

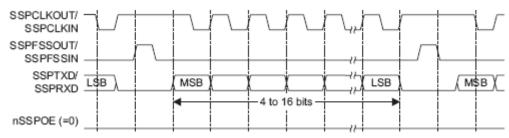



Рисунок 105. Формат синхронного обмена протокола SPI, SPO=1, SPH=0 (непрерывный обмен)

SSP\_CLK

- SSP\_FSS

SSP\_TXD

FIFO

SSP\_FSS

SSP\_RXD . SSPTXD

SSP\_CLK, SSP\_TXD

SSP CLK

SSP\_CLK.

SSP\_FSS

SSP\_CLK.

SSP\_FSS

SPH=0

SSP\_FSS ,

SSP FSS

SSP\_CLK.

#### 27.6.19 Формат синхронного обмена SPI фирмы Motorola, SPO=1, SPH=1

SPI SPO=1,

SPH=1 106 -

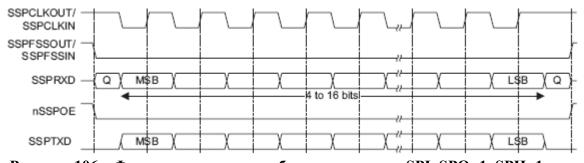



Рисунок 106. Формат синхронного обмена протокола SPI, SPO=1, SPH=1

<u>Примечание</u> – Q

- SSP\_CLK
- SSP\_FSS
- SSP\_TXD

**FIFO** 

SSP\_FSS

SSP RXD SSP TXD

SSP\_CLK

SSP\_CLK

SSP\_CLK.

SSP\_FSS

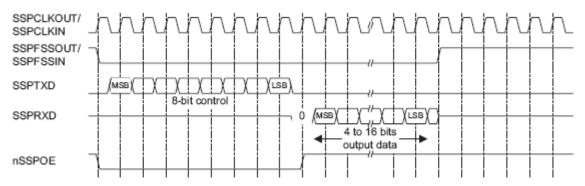
SSP\_CLK.

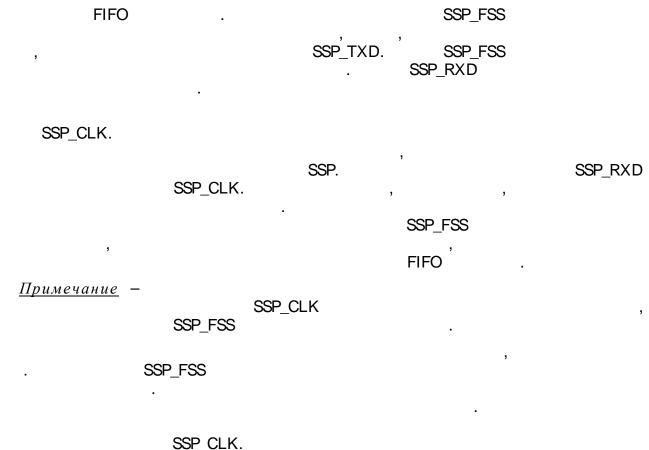
SSP\_FSS

#### 27.6.20 Формат синхронного обмена Microwire фирмы National Semiconductor

Microwire

107 -108 -





Рисунок 107. Формат синхронного обмена протокола Microwire (одиночный обмен) Microwire

SPI,

8-

4 16 13 25

- SSP\_CLK
- SSP FSS
- SSP\_TXD



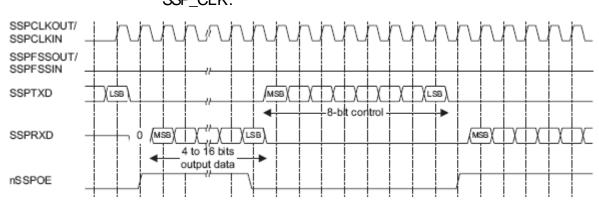



Рисунок 108. Формат синхронного обмена протокола Microwire (непрерывный обмен)

Требования к временным параметрам сигнала SSP\_FSS относительно тактового сигнала SSP\_CLK в режиме Microwire



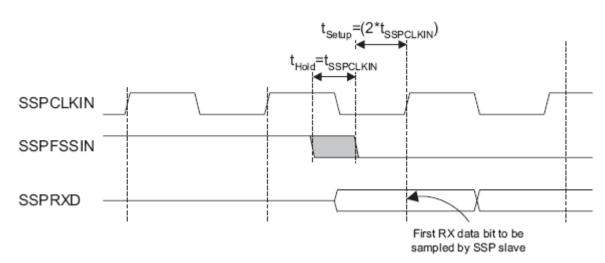



Рисунок 109. Формат Microwire, требования к времени установки и удержания сигнала

#### 27.6.21 Примеры конфигурации модуля в ведущем и ведомом режимах

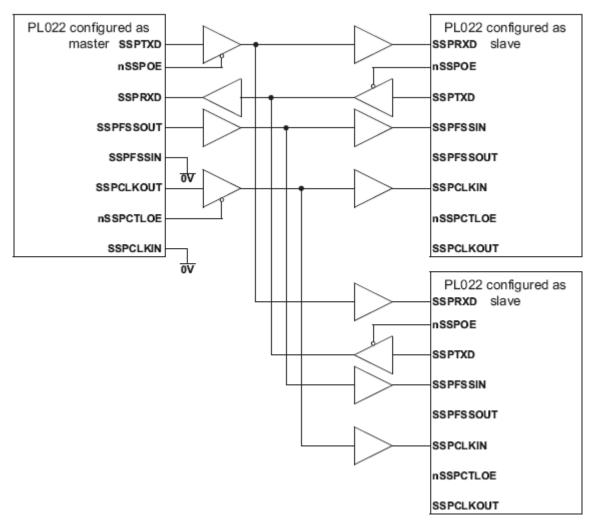



Рисунок 110. Ведущее устройство SSP подключено к двум ведомым

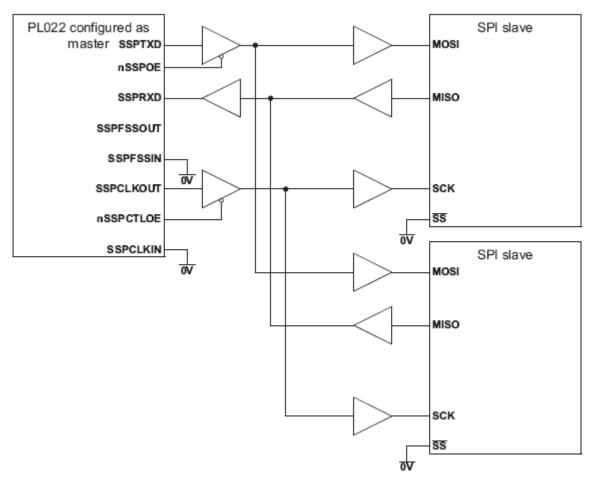
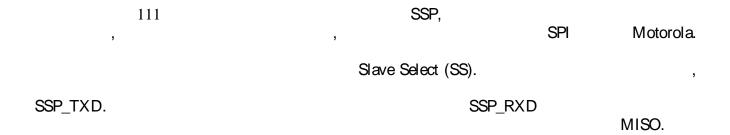




Рисунок 111. Ведущее устройство SSP подключено к двум ведомым, поддерживающим SPI



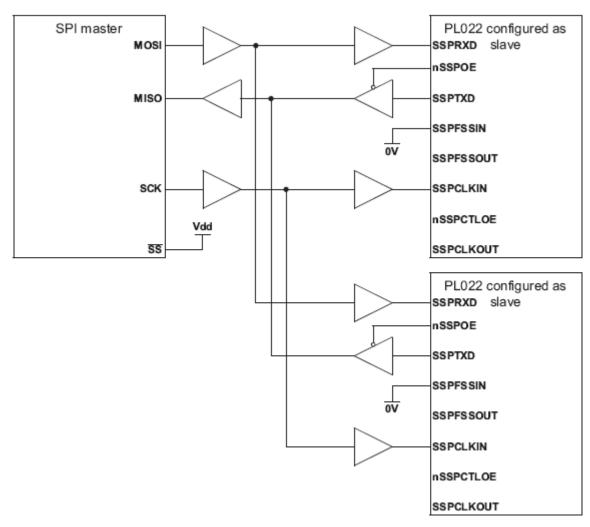



Рисунок 112. Ведущее устройство, протокол SPI, подключено к двум ведомым модулям SSP

Motorola, SSP,
Slave Select (SS)

MOSI

SSP\_TXD

SSP\_TXD

SSP\_TXD

# 27.6.22 Интерфейс прямого доступа к памяти SSP

DMA SSPDMACR. DMA SSPRXDMASREQ -FIFO SSPRXDMABREQ -FIFO SSPRXDMACLR -DMA, DMA SSPTXDMASREQ -FIFO SSPTXDMABREQ -**FIFO DMA** SSPTXDMACLR -DMA, 19 DMA SSP Примечание DMA DMACLR. **DMA** DMA

339

DMABREQ.

DMA.

Таблица 339 — Параметры срабатывания запросов блочного обмена данными в режиме DMA

|                      | Длина блока обмена данными                         |                                                   |
|----------------------|----------------------------------------------------|---------------------------------------------------|
| Пороговый<br>уровень | Буфер передатчика (количество незаполненных ячеек) | Буфер приемника<br>(количество заполненных ячеек) |
| 1/2                  | 4                                                  | 4                                                 |

113

DMA, PCLK. DMACLR.

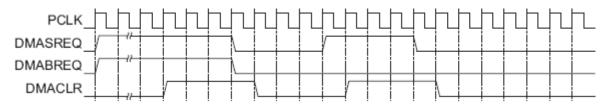



Рисунок 113. Временные диаграммы обмена в режиме DMA

# 27.7 Программное управление модулем

# 27.7.1 Общая информация

SSP,
340.

:
- +0x028 ... +0x07C +0xFD0 ... +0xFDC
;
+0x080 ... +0x088

# 27.7.2 Описание регистров контроллера SSP

SSP 340.

Таблица 340 – Обобщенные данные о регистрах модуля SSP

| Базовый<br>адрес | Наимено-<br>вание | Тип | Значение после | Раз-<br>мер, | Описание        |
|------------------|-------------------|-----|----------------|--------------|-----------------|
| адрес            | Вапис             |     | сброса         | бит          |                 |
| 0x4004_0000      | MDR_SSP1          |     | <u>.</u>       |              | SSP1            |
| 0x400A_0000      | MDR_SSP2          |     |                |              | SSP2            |
| Смещение         |                   |     |                |              |                 |
| 0x000            | CR0               | RW  | 0x0000         | 16           | MDR_SSPx->CR0 0 |
| 0x004            | CR1               | RW  | 0x0            | 4            | MDR_SSPx->CR1 1 |
| 0x008            | DR                | RW  | 0x             | 16           | FIFO ( )        |
|                  |                   |     |                |              | FIFO ( )        |
|                  |                   |     |                |              | MDR_SSPx->DR    |
| 0x00C            | SR                | RO  | 0x03           | 3            | MDR_SSPx->SR    |
| 0x010            | CPSR              | RW  | 0x00           | 8            |                 |
|                  |                   |     |                |              | MDR_SSPx->CPSR  |
| 0x014            | IMSC              | RW  | 0x0            | 4            | MDR_SSPx->IMSC  |
| 0x018            | RIS               | RO  | 0x8            | 4            |                 |
| 0110 = 0         | TCIS              | RO  | 0110           |              | MDR_SSPx->RIS   |
| 0x01C            | MIS               | RO  | 0x0            | 4            | MDD GGD MG      |
|                  |                   |     |                |              | MDR_SSPx->MIS   |
| 0x020            | ICR               | WO  | 0x0            | 4            |                 |
|                  |                   |     |                |              | MDR_SSPx->ICR   |
| 0x024            | DMACR             | RW  | 0x0            | 2            | MDR_SSPx->DMACR |
|                  |                   |     |                |              |                 |

<u>Примечание</u> – « » : RW – RO – , WO – .

# 27.7.3 MDR\_SSPx->CR0

0

CR0

SSP. 341.

# Таблица 341 – Формат регистра CR0

| №    | Функциональное | Расшифровка функционального имени бита, краткое                                                                                                                    |
|------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений                                                                                                                         |
| 3116 | -              |                                                                                                                                                                    |
| 158  | SCR            | SCR .                                                                                                                                                              |
|      |                | : F_SSPCLK / (CPSDVR * (1 + SCR)), CPSDVR - 2 254 ( . SSPCPSR), SCR - 0 255                                                                                        |
| 7    | SPH            | SSPCLKOUT (<br>SPI Motorola) « SPI<br>Motorola»                                                                                                                    |
| 6    | SPO            | SSPCLKOUT (<br>SPI Motorola) «<br>SPI Motorola»                                                                                                                    |
| 54   | FRF            | 00 – SPI Motorola;<br>01 – SSI Texas Instruments;<br>10 – Microwire National Semiconductor;<br>11 –                                                                |
| 30   | DSS            | :  0000 -  0001 -  0010 -  0011 - 4  0100 - 5  0101 - 6  0110 - 7  0111 - 8  1000 - 9  1001 - 10  1010 - 11  1011 - 12  1100 - 13  1101 - 14  1110 - 15  1111 - 16 |

### 27.7.4 MDR\_SSPx->CR1

CR1 SSP.

1

342.

| Таблица | 342 – | Регист | p | CR1 |
|---------|-------|--------|---|-----|
|         |       |        |   |     |

| No   | Функциональное | Расшифровка ф   | ункционально  | ого имени бита, | краткое          |
|------|----------------|-----------------|---------------|-----------------|------------------|
| бита | имя бита       | описание назнач | нения и прини | маемых значен   | ий               |
| 154  |                | ,               |               |                 |                  |
|      |                |                 |               | 0               |                  |
| 3    | SOD            |                 |               |                 | (M <i>S</i> =1). |
|      |                | ,               |               |                 |                  |
|      |                | SOD<br>SSP      |               | ,               |                  |
|      |                |                 | SSF           | P_TXD.          |                  |
|      |                | 0 -             | ;             | SSP_TXD         | ·                |
|      |                | 1 -             | ;             | SSP_TXD         |                  |
| 2    | MS             |                 |               | :               |                  |
|      |                | 0 –<br>1 –      | (             |                 | );               |
| 1    | SSE            | 0 –             |               | :               |                  |
|      |                | 1 –             | ,             |                 |                  |
| 0    | LBM            |                 | :             |                 |                  |
|      |                | 0 —             |               |                 | ,                |
|      |                | 1 –             |               |                 |                  |

### 27.7.5 MDR\_SSPx->DR

SSPDR 16

**FIFO** 

**FIFO** 

SSP\_TXD

**FIFO** 

SSPDR

Microwire

National Semiconductor

SSP

(
FIFO

SSE

0.

SSPDR

343.

## Таблица 343 – Формат регистра DR

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |    |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|----|
|           |                            | описание назначения и принимаемых значении                                                 |    |
| 150       | DATA                       | ( ).                                                                                       | 16 |
|           |                            | , SSPDR .                                                                                  | .0 |
|           |                            | •                                                                                          |    |

# 27.7.6 MDR\_SSPx->SR

FIFO SSP.

SSPCPSR 344.

# Таблица 344 – Регистр SR

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|
| 155       |                            | ,                                                                                          |
| 4         | BSY                        | :<br>0- SSP ;<br>1- SSP /<br>FIFO                                                          |
| 3         | RFF                        | FIFO : 0 - ; 1 -                                                                           |
| 2         | RNE                        | FIFO : 0 - ; 1 -                                                                           |
| 1         | TNF                        | FIFO : 0 - ; 1 -                                                                           |
| 0         | TFE                        | FIFO : 0 - ; 1 -                                                                           |

# 27.7.7 MDR\_SSPx->CPSR

SSPCPSR

2 254.

**SSPCPSR** 

345

SSPSR.

# Таблица 345 – Регистр CPSR

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|
| 318       | -                       |                                                                                            |
| 7 0       | CPSDVSR                 | 2 254.                                                                                     |

### 27.7.8 MDR\_SSPx->IMSC

.

0 —

**IMSC** 

# Таблица 346 – Регистр IMSC

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |      |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|------|
| 314       |                            |                                                                                            |      |
| 3         | TXIM                       | 50 %                                                                                       | FIFO |
|           |                            | 1 —                                                                                        |      |
| 2         | RXIM                       | 50 %                                                                                       | FIFO |
|           |                            | 1 —                                                                                        |      |
| 1         | RTIM                       | (                                                                                          | FIFO |
|           |                            | ).<br>1 –<br>0 –                                                                           |      |
| 0         | RORIM                      | 1<br>0 -                                                                                   |      |

# 27.7.9 MDR\_SSPx->RIS

347 , RIS.

Таблица 347 – Регистр RIS

| <b>№</b><br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|------------------|-------------------------|--------------------------------------------------------------------------------------------|
| 31 4             |                         |                                                                                            |
| 3                | TXRIS                   | SSPTXINTR                                                                                  |
| 2                | RXRIS                   | SSPRXINTR                                                                                  |
| 1                | RTRIS                   | SSPRTINTR                                                                                  |
| 0                | RORRIS                  | SSPRORINTR                                                                                 |

# 27.7.10 MDR\_SSPx->MIS

SSPMIS

Таблица 348 – Регистр MIS

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|
| 314       |                            |                                                                                            |
| 3         | TXMIS                      | SSPTXINTR                                                                                  |
| 2         | RXMIS                      | SSPRXINTR                                                                                  |
| 1         | RTMIS                      | SSPRTINTR                                                                                  |
| 0         | RORMIS                     | SSPRORINTR                                                                                 |

# 27.7.11 MDR\_SSPx->ICR

0 . .

**SSPICR** 

# Таблица 349 – Регистр ICR

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |  |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|--|
| 31 2      |                            |                                                                                            |  |
| 1         | RTIC                       | SSPRTINTR                                                                                  |  |
| 0         | RORIC                      | SSPRORINTR                                                                                 |  |

### 27.7.12 MDR\_SSPx->DMACR

### **UARTDMACR**

### Таблица 350 – Регистр DMACR

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |    |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|----|
| 312       |                         |                                                                                            |    |
| 1         | TXDMAE                  | DMA .                                                                                      | 1, |
|           |                         | DMA                                                                                        |    |
|           |                         | FIFO                                                                                       |    |
| 0         | RXDMAE                  | DMA .                                                                                      | 1, |
|           |                         | DMA                                                                                        |    |
|           |                         | FIFO                                                                                       |    |

# 27.8 Прерывания

SSPRXINTR SSPTXINTR SSPRORINTR SSPRORINTR SSPRORINTR SSPINTR SSPRORINTR.

SSPRORINTR.

SSPRXINTR, SSPTXINTR, SSPRTINTR
SSPRORINTR.

SSPIMSC.
1

SSPRXINTR SSPTXINTR

FIFO

SSPRIS, SSPMIS.

**SSPRXINTR** 

FIFO

**SSPTXINTR** 

**FIFO** 

SSP.

,

**SSPRORINTR** 

**FIFO** 

SSPRTINTR

FIFO

32

SSP\_RXD.

1 RTIC

SSPTICR.

**SSPINTR** 

SSPRXINTR, SSPTXINTR, SSPRTINTR SSPRORINTR

# 28 Контроллер MDR\_UART

```
(UART – Universal
Asynchronous
               Receiver-Transmitter)
                                         (ENDEC - ENcoder/DEcoder)
                                                                        SIR (SIR - Serial
Infra Red)
                    Infrared Data Association (IrDA).
    28.1
            Основные сведения
                                    16C650.
    28.1.1
             Основные характеристики модуля UART
                                                                      (SIR).
                                         (16x12)
                                                           (16x8)
                                                                      FIFO (First In First
Out -
                                    ),
                             FIFO
                                                      (1x16 - 65535x16).
                                 3.6864
                                                       FIFO
                                                                                  FIFO
                                                  CTS, DCD, DSR, RTS, DTR RI).
                     5, 6, 7
                                                                );
```

```
1
                         2
                                      UARTCLK/16
                            IrDA SIR
                          IrDA SIR;
                                                      (3/16)
                                    (1.41 - 2.23);
                                             UARTCLK
    28.1.2
            Программируемые параметры
                                               FIFO (
      16
                                                        FIFO (1/8, 1/4, 1/2, 3/4 7/8);
                                                                - 1.8432
                            1.42 - 2.12
            Отличия от контроллера UART 16C650
    28.1.3
16C650
                                                        FIFO
                                                                       -1/8, 1/4,
       1/2, 3/4 7/8;
                                                        FIFO
                                                                        -1/8, 1/4,
       1/2, 3/4 7/8;
                                      16C650
                                                                     2
          );
    28.2 Функциональные возможности
```

```
FIFO,
                                                16
    Модуль приемопередатчика:
              UARTCLK;
                  UART 16C650.
                 UARTLCR_H
     (UARTIBRD)
                              (UARTFBRD).
                                             (DMA)
                    DMA.
                                                                  FIFO.
                                  FIFO
                                                           FIFO
                                                                      » (Clear To
                                           » (Data Carrier Detected, DCD), «
Send, CTS), «
           » (Data Set Ready, DSR)
                                                     » (Ring Indicator, RI),
                                 » (Request to Send, RTS)
(Data Terminal Ready, DTR).
                                                                    nUARTCTS
nUARTRTS.
    Блок последовательного интерфейса инфракрасной передачи данных
                        IrDA SIR
                                                                ENDEC.
                                                                    UARTTXD
UARTRXD,
                              nSIROUT
                                        SIRIN.
                                          UARTTXD
                                                                        (
UARTRXD.
                   SIR ENDEC
                                                              IrDA SIR,
                                               10
```

# 28.3 Описание функционирования блока UART

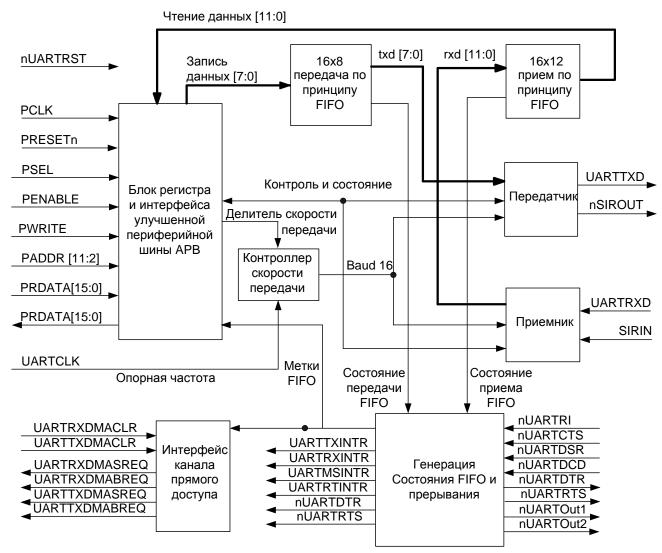



Рисунок 114. Блок-схема универсального асинхронного приёмопередатчика (UART)

### 28.3.1 Генератор тактового сигнала приемопередатчика

Baud16 IrLPBaud16.
Baud16

UARTCLK , 16

IrLPBaud16

# 28.3.2 Буфер FIFO передатчика

8 , 16 , « , ». , APB, .

. FIFO

# 28.3.3 Буфер FIFO приемника

12 , 16 , «

APB. FIFO

# 28.3.4 Блок передатчика

# 28.3.5 Блок приемника

, , ,

### 28.3.6 Блок формирования прерываний

© АО «ПКК Миландр»

# 28.3.7 Интерфейс прямого доступа к памяти

**DMA** 

DMA.

### 28.3.8 Блок и регистры синхронизации

CPU\_CLK UARTCLK.

, CPU\_CLK

UARTCLK,

# 28.4 Описание функционирования ИК кодека IrDA SIR

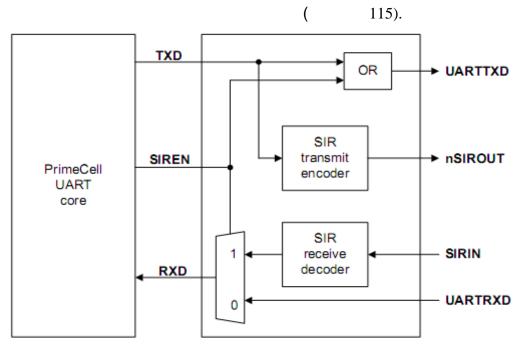



Рисунок 115. Структурная схема кодека IrDA

### 28.4.1 Кодер ИК передатчика

1.8432 UARTCLK. IrLPBaud16 UARTILPR. (« ») Baud16 Baud16 UARTCLK. UARTCLK. IrDA SIR, UARTCLK 3.6834 13%. 115200 / , 9%. 28.4.2 Декодер ИК приемника UART. **UART** <u>Примечание</u> – SIRIN : - 3/16 Baud16 IrDA; - 3/16 IrLPBaud16 IrDA

# 28.5 Описание работы UART

## 28.5.1 Сброс модуля

« ». 28.5.2 Тактовые сигналы

UARTCLK

F\_UARTCLK(min) >= 16 \* baud\_rate\_max;
F UARTCLK(max) <= 16 \* 65535 \* baud rate min.</pre>

, 110 460800 UARTCLK 7.3728 115.34 .

UARTCLK,

UARTCLK. UARTCLK , 5/3 CPU\_CLK.

F\_UARTCLK <= 5/3 \* F\_ CPU\_CLK.

, UART 921600 , UARTCLK 14.7456 , CPU\_CLK 8.85276 . , UART FIFO.

# 28.5.3 Работа универсального асинхронного приемопередатчика

UARTLCR. 30 , APB

UARTLCR\_H -

- ;

- ;

--:

UARTIBRD -

UARTFBRD –

### 28.5.4 Коэффициент деления частоты

22 16 , 6 –

```
UARTCLK
                                                   3.6864
                                                     16-
                                                                       UARTIBRD.
                                                 UARTFBRD.
         Коэффициент деления = UARTCLK / (16 * скорость передачи
    данных)
         = BRD I + BRD F,
                          , BRD F-
         BRD I -
                                                         6-bit fractional
                              16-bit integer
                                                             part
                        Рисунок 116. Коэффициент деления
                                                   UARTFBRD,
                                                                               2<sup>n</sup>,
                                                                   64 (
                     UARTFBRD)
   n –
         M = integer (BRD F * 2<sup>n</sup> + 0.5),
    integer -
                                                 , n = 6.
                                         Baud16,
                                                  UARTCLK
                                                                               16
    28.5.5
            Передача и прием данных
                                                                    FIFO,
                                               16-
                              FIFO
                                                 FIFO
                                      UARTLCR_H.
                   FIFO
                                                                 FIFO
      BUSY
                                               BUSY
     FIFO
                BUSY
UART RXD
                                                             ),
```

```
Baud16,
                                                                                  )
                                                           Baud16.
                         SIR IrDA.
                                                                            UART_RXD
                                                                      Baud16
                              Baud16 (
16
                                                  ).
                          UART_RXD).
                                  FIFO
                                                351).
                                   ( .
    28.5.6
             Биты ошибки
       [10...8]
                                    FIFO
                    FIFO
                                  11
            351
                                                            FIFO-
```

Таблица 351 – Назначение бит слова данных в FIFO-буфере приемника

| •               |            |
|-----------------|------------|
| Бит буфера FIFO | Назначение |
| 11              |            |
| 10              | - « »      |
| 9               |            |
| 8               |            |
| 70              |            |

# 28.5.7 Бит переполнения буфера

|                             | FIFO                             |                    | ,           |   |
|-----------------------------|----------------------------------|--------------------|-------------|---|
| FIFO ,                      | ,                                | (                  | ),          | , |
| Проверка по шлейфу          | ,                                |                    |             |   |
| (<br>1 LBE                  |                                  | UARTCF             | )<br>₹.     |   |
| 28.5.9 Работа кодека ИК обм | ена данными IrDA                 | SIR                |             |   |
| ,                           |                                  | ,<br>IrE           | DA SIR<br>- |   |
| <u>В режиме IrDA</u>        | :                                | 3/16               | nSIROUT     |   |
| •                           |                                  |                    |             | , |
|                             | SIRIN.<br><i>µженным энергог</i> | . ,<br>потребления | <u>эм</u>   | , |
| 1.8432 ).<br>UARTCR.        | IrLPBaud16 (                     | 1.63               | SIRLP       |   |
| -<br>;                      | ,                                |                    | :           |   |
|                             | ,                                |                    | IrDA SIR,   |   |
|                             | 10 .                             |                    |             |   |
|                             | ,                                |                    | (           | ) |
| IrLPBaud16                  | 1                                | UARTILPR.          | UARTCLK     |   |

UARTCR 1 SIRTEST UARTTCR.

, nSIROUT,

SIRIN.

Примечание -

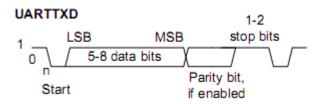



Рисунок 117. Кадр передачи данных

# 28.5.10 Модуляция данных IrDA



Рисунок 118. Модуляция данных IrDA

# 28.6 Линии управления модемом

(DTE), (DCE).
DTE ( . 114).

DTE DCE .

Таблица 352 – Назначение управления модемом в режимах DTE и DCE

| Сигнал    | Назначение                    |                                    |  |  |  |  |  |
|-----------|-------------------------------|------------------------------------|--|--|--|--|--|
|           | Режим оконечного оборудования | Режим оборудования передачи данных |  |  |  |  |  |
| nUARTCTS  | -                             |                                    |  |  |  |  |  |
| nUARTDSR  |                               |                                    |  |  |  |  |  |
| nUARTDCD  |                               | -                                  |  |  |  |  |  |
| nUARTRI   |                               | -                                  |  |  |  |  |  |
| nUARTRTS  |                               |                                    |  |  |  |  |  |
| nUARTDTR  |                               |                                    |  |  |  |  |  |
| nUARTOUT1 | -                             |                                    |  |  |  |  |  |
| nUARTOUT2 | -                             |                                    |  |  |  |  |  |

### 28.6.1 Аппаратное управление потоком данных

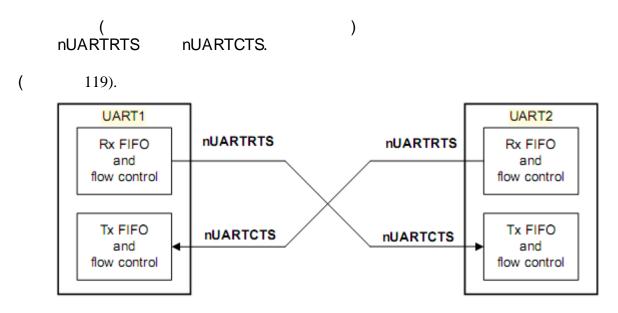



Рисунок 119. Взаимодействие двух устройств последовательной связи с аппаратным управлением потоком данных

RTS, nUARTRTS , FIFO . CTS, nUARTCTS . RTSEn CTSEn

UARTCR.

353

## Таблица 353 – Режимы управления потоком данных

| CTSEn | RTSEn | Описание |
|-------|-------|----------|
| 1     | 1     | CTS RTS  |
| 1     | 0     | CTS      |
| 0     | 1     | RTS      |
| 0     | 0     |          |

<u>Примечание</u> – RTS, RTSEn UARTCR RTS.

# 28.6.2 Управление потоком данных по линии RTS

RTS
FIFO

nUARTRTS

nUARTRTS

nUARTRTS

fifo

nUARTRTS

nUARTRTS

nUARTRTS

nUARTRTS

FIFO

nUARTRTS

nUARTRTS

UART , FIFO, .

### 28.6.3 Управление потоком данных по линии CTS

nUARTCTS , , ,

nUARTCTS

CTS , UART - FIFO

# 28.7 Интерфейс прямого доступа к памяти

DMA UARTDMACR.

| DMA             |           |      | :    |         |       |     |
|-----------------|-----------|------|------|---------|-------|-----|
| Для приема:     |           |      |      |         |       |     |
| UARTRXDMASREQ – | UART.     |      |      | ,       | _     | 12  |
|                 |           |      |      |         | ,     | 12  |
| UARTRXDMABREQ – | FIFO      | ,    |      | ,       |       | •   |
| UAKTRADMADREQ – |           |      |      | ,       |       |     |
|                 | ,         |      |      | FIFO    |       |     |
|                 | UARTIFLS. | FIFO |      |         |       |     |
| UARTRXDMACLR -  |           |      | DMA, |         |       |     |
|                 |           |      |      |         |       |     |
|                 |           |      |      |         | ,     |     |
| Для передачи:   | •         |      |      |         |       |     |
| UARTTXDMASREQ – |           |      |      | ,       |       |     |
|                 |           |      |      | •       |       | -   |
|                 | ,         | FIFO |      |         | ,     |     |
| UARTTXDMABREQ – | ,         |      | •    |         |       |     |
| UNKTINDWINDKEQ  |           |      |      | ,       |       |     |
|                 | ,         |      |      | FIFO    |       |     |
|                 | UARTIFLS. | FIFO |      |         |       |     |
| UARTTXDMACLR -  |           | DMA, |      |         |       | DMA |
|                 |           |      |      | ,       |       |     |
|                 |           | ,    |      |         | -     |     |
|                 |           |      |      |         |       |     |
| ,               |           |      |      | •       | ,     | ,   |
| ,               | ,         |      |      |         |       |     |
|                 |           |      |      | ,<br>19 | _     |     |
| FIFO            | • ,       | ,    |      | .0      | DMA , |     |
|                 | ,         |      |      |         |       |     |
| Примечание –    |           |      |      |         | UART  |     |
|                 |           |      |      |         |       |     |

**DMA** 

DMACLR.

DMA

DMA

DMA TXDMAE RXDMAE DMA UARTDMACR.

**FIFO** 

; , DMA

DMA UARTRXDMASREQ UARTTXDMASREQ.

FIFO

UARTLCR\_H.

FIFO

,

354

**UARTRXDMABREQ** 

**UARTTXDMABREQ** 

Таблица 354 – Параметры срабатывания запросов блочного обмена данными в режиме DMA

| Попокору ий          | Длина блока обмена данными                            |                                                |  |  |  |  |
|----------------------|-------------------------------------------------------|------------------------------------------------|--|--|--|--|
| Пороговый<br>уровень | Буфер передатчика (количество<br>незаполненных ячеек) | Буфер приемника (количество заполненных ячеек) |  |  |  |  |
| 1/8                  | 14                                                    | 2                                              |  |  |  |  |
| 1/4                  | 12                                                    | 4                                              |  |  |  |  |
| 1/2                  | 8                                                     | 8                                              |  |  |  |  |
| 3/4                  | 4                                                     | 12                                             |  |  |  |  |
| 7/8                  | 2                                                     | 14                                             |  |  |  |  |

DMA UARTDMACR

DMAONERR,

**DMA** 

UARTEINTR.

DMA -

UARTRXDMASREQ

UARTRXDMABREQ

UARTEINTR.

DMA,

**UARTEINTR** 

120

DMA,

DMACLR.

CPU\_CLK.

DMA

DMA

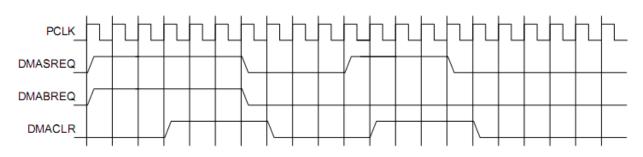



Рисунок 120. Временные диаграммы одноэлементного и блочного запросов DMA

# 28.8 Прерывания

```
11
    UARTRXINTR -
    UARTTXINTR -
    UARTRTINTR -
    UARTMSINTR -
        UARTRIINTR,
                                        nUARTRI;
        UARTCTSINTR,
                                         nUARTCTS;
        UARTDCDINTR,
                                          nUARTDCD;
        UARTDSRINTR,
                                         nUARTDSR.
    UARTEINTR –
        UARTOEINTR,
        UARTBEINTR,
        UARTPEINTR,
        UARTFEINTR,
    UARTINTR -
                                   UARTRXINTR, UARTTXINTR,
               UARTRINTR, UARTMSINTR UARTEINTR.
                                  UARTIMSC.
                   0-
                                 UARTRXINTR
                                               UARTTXINTR
         UARTRXINTR
                      UARTTXINTR
                                                   FIFO
                            UARTEINTR
     UARTRIS,
                                               UARTMIS.
28.8.1
       UARTMSINTR
           (nUARTCTS, nUARTDCD, nUARTDSR, nUARTRI).
                  1
                                        UARTICR.
```

```
UARTRXINTR
    28.8.2
            FIFO
           FIFO
    28.8.3
           UARTTXINTR
            FIFO
            FIFO
                                                 ),
                              FIFO
    Примечание -
FIFO
                 FIFO.
    28.8.4
          UARTRTINTR
                                                            FIFO
                      32
     FIFO
         UARTICR.
    28.8.5
           UARTEINTR
```

**UARTMIS.** UARTRIS, 7 UARTICR. 10. **28.8.6 UARTINTR** UARTRXINTR, UARTTXINTR, UARTRTINTR, UARTMSINTR UARTEINTR 28.9 Программное управление модулем 28.9.1 Общая информация 0 355 - RW-- RO -- WO-

# 28.9.2 Обобщенные данные о регистрах устройства

.

Таблица 355 – Обобщенные данные о регистрах устройства

| Смещение        | Наименование | Тип | Значение<br>после сброса | Размер,<br>бит | Описание              |
|-----------------|--------------|-----|--------------------------|----------------|-----------------------|
| 0x40030000      | MDR_UART1    |     | _                        |                | UART1                 |
| 0x40038000      | MDR_UART2    |     |                          |                | UART2                 |
| 0x000           | DR           | RW  | 0x                       | 12/8           | MDR_UARTx->DR         |
| 0x004           | RSR_ECR      | RW  | 0x0                      | 4/0            | MDR_UARTx->RSR_ECR /  |
| 0x008-<br>0x014 |              |     |                          |                |                       |
| 0x018           | FR           | RO  | 0b-10010                 | 9              | MDR_UARTx->FR         |
| 0x01C           |              |     |                          |                |                       |
| 0x020           | ILPR         | RW  | 0x00                     | 8              | MDR_UARTx->ILPR       |
| 0x024           | IBRD         | RW  | 0x0000                   | 16             | MDR_UARTx->IBRD       |
| 0x028           | FBRD         | RW  | 0x00                     | 6              | MDR_UARTx->FBRD       |
| 0x02C           | LCR_H        | RW  | 0x00                     | 8              | MDR_UARTx->LCR_H      |
| 0x030           | CR           | RW  | 0x0300                   | 16             | MDR_UARTx->CR         |
| 0x034           | IFLS         | RW  | 0x12                     | 6              | MDR_UARTx->IFLS  FIFO |
| 0x038           | IMSC         | RW  | 0x000                    | 11             | MDR_UARTx->IMSC       |
| 0x03C           | RIS          | RO  | 0x00-                    | 11             | MDR_UARTx->RIS        |
| 0x040           | MIS          | RO  | 0x00-                    | 11             | MDR_UARTx->MIS        |
| 0x044           | ICR          | WO  | _                        | 11             | MDR_UARTx->ICR        |
| 0x048           | DMACR        | RW  | 0x00                     | 3              | MDR_UARTx->DMACR DMA  |

# 28.9.3 MDR\_UARTx->DR

Таблица 356 – Формат регистра UARTDR

| <b>№</b><br>бита | Сигнал | Назначение                 |
|------------------|--------|----------------------------|
| 1512             |        |                            |
| 11               | OE     | . 1 ,                      |
|                  |        | 0 ,                        |
| 10               | BE     | . 1                        |
|                  |        | ,<br>,<br>,                |
|                  |        | ). FIFO                    |
|                  |        | ,                          |
|                  |        | <sup>'</sup> 1             |
| 9                | PE     | . 1 , EPS SPS UARTLCR_H. , |
| 8                | FE     | . 1 , ,                    |
|                  |        | 1). FIFO                   |
| 70               | DATA   | ( ).                       |

Примечание -

# 28.9.4 MDR\_UARTx->RSR\_ECR / UARTRSR. UARTDR. UARTDR. UARTDR UARTDR UARTDR UARTECR UARTECR UARTECR UARTECR UARTECR UARTECR UARTECR UARTECR

# Таблица 357 – Регистр UARTRSR/UARTECR

| №<br>бита |    |                 | ка функционал<br>и принимаемы |      | и бита, краткое оп           | <b>писание</b> |
|-----------|----|-----------------|-------------------------------|------|------------------------------|----------------|
| 74        |    | ,               | •                             |      |                              |                |
| 3         | OE |                 |                               |      |                              | 1 ,            |
|           |    |                 |                               | 0 ,  | ,                            | UARTECR.       |
| _         |    | ,               |                               | FIFO |                              |                |
| 2         | BE | ,               | •                             | 1    |                              |                |
|           |    |                 | ).                            | ,    | ,<br>O                       |                |
|           |    | UARTECR.        |                               | FIFO |                              |                |
|           |    |                 |                               |      |                              | , 1            |
| 1         | PE |                 |                               |      | 1                            | ,              |
|           |    | EPS SPS<br>FIFO | 0                             |      | UARTLCR_H (<br>UARTECR.<br>, | . 3-12).       |
| 0         | FE |                 |                               |      | 1                            | ,              |
|           |    | (               | UARTECR.                      | 1).  | 0<br>FIFO                    |                |

| П | p | им | e | ч | a | н | ия | : |
|---|---|----|---|---|---|---|----|---|
|   | _ |    |   |   |   |   |    |   |

1. UARTRSR ,

, UARTDR. , UARTRSR

UARTDR. , UARTDR.

2. UARTRSR/UARTECR

28.9.5 MDR\_UARTx->FR

TXFF, RXFF BUSY 0,

TXFE RXFE – 1. UARTFR.

# Таблица 358 – Регистр UARTFR

| №<br>бита | Функциональное имя бита |               | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |            |                  |          |  |  |  |
|-----------|-------------------------|---------------|--------------------------------------------------------------------------------------------|------------|------------------|----------|--|--|--|
| 159       |                         | •             |                                                                                            |            |                  |          |  |  |  |
| 8         | RI                      |               | nUARTRI                                                                                    |            |                  |          |  |  |  |
| 7         | TXFE                    | FIFO<br>FEN , |                                                                                            | UAR        | TLCR_H.          | FIFO     |  |  |  |
|           | DVIDE                   |               |                                                                                            | 1          | FIFO             | •        |  |  |  |
| 6         | RXFF                    | FIFO<br>FEN , |                                                                                            | UAR<br>1   | TLCR_H.          | FIFO     |  |  |  |
|           |                         |               |                                                                                            | 1          | FIFO             |          |  |  |  |
| 5         | TXFF                    | FIFO<br>FEN   | 4                                                                                          | UART       | LCR_H.           | FIFO     |  |  |  |
|           |                         | ,             | 1 1                                                                                        |            | FIFO             | •        |  |  |  |
| 4         | RXFE                    | FIFO          |                                                                                            | UARTLCR_H. | FIFO             | FEN<br>, |  |  |  |
|           |                         | 1             | '<br>1                                                                                     | FIFO       | •                |          |  |  |  |
| 3         | BUSY                    | UART .        | 1                                                                                          | ,          | , ,              |          |  |  |  |
|           |                         | ,             | 1                                                                                          |            | . ,<br>FIFO<br>( | ,        |  |  |  |
| 2         | DCD                     |               | nUARTDCD                                                                                   |            |                  | •        |  |  |  |
| 1         | DSR                     |               | nUARTDSR                                                                                   |            |                  |          |  |  |  |
| 0         | CTS                     |               | nUARTCT                                                                                    |            |                  |          |  |  |  |

# 28.9.6 MDR\_UARTx->ILPR

UARTCLK, 359 – UARTILPR. IrLPBaud16.

:

ILPDVSR = F\_UARTCLK / F\_IrLPBaud16, F\_IrLPBaud16 1.8432 .

,

1.42 ΜΓμ < F\_IrLPBaud16 < 2.12 ΜΓμ,

# Таблица 359 – Регистр UARTILPR

IrLPBaud16).

| No   | Функциональное | Расшифровка функционального имени бита, краткое описание |    |  |  |
|------|----------------|----------------------------------------------------------|----|--|--|
| бита | имя бита       | назначения и принимаемых значений                        |    |  |  |
| 70   | ILPDVSR        | UARTCLK,                                                 |    |  |  |
|      |                | IrLPBaud16.                                              | 0. |  |  |
|      |                | <u>Примечание</u> — $0-$                                 |    |  |  |
|      |                | IrLPBaud16                                               |    |  |  |

<u>Примечание</u> – IrDA SIRIN

IrLPBaud16.

# 28.9.7 MDR\_UARTx->IBRD

1,41 – 2,11

**UARTBIRD** 

# Таблица 360 – Регистр UARTBIRD

| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |
|------|----------------|----------------------------------------------------------|
| бита | имя бита       | назначения и принимаемых значений                        |
| 150  | BAUDDIV_INT    |                                                          |
|      |                |                                                          |
|      |                | 0                                                        |

### 28.9.8 MDR\_UARTx->FBRD

361

### Таблица 361 – Регистр UARTBFRD

| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |
|------|----------------|----------------------------------------------------------|
| бита | имя бита       | назначения и принимаемых значений                        |
| 50   | BAUDDIV_FRAC   |                                                          |
|      |                |                                                          |
|      |                | 0                                                        |

BAUDDIV = FUARTCLK/(16 \* Baud\_rate),

FUARTCLK - UART, Baud\_rate -

BAUDDIV - BAUDDIV\_INT

BAUDDIV FRAC,

## Примечания:

UARTIBRD UARTFBRD

- 1, 65535 (2<sup>16</sup> - 1).

, UARTIBRD, 0, UARTFBRD :

– , UARTIBRD 65535 (0xFFFF), UARTFBRD

Пример. Вычисление коэффициента деления.

230400 / ,

UARTCLK 4 . :

 $=(4*10^6)/(16*230400)=1.085.$ 

, BRDI = 1, BRDF = 0.085.

, , UARTBFRD,

m = integer ((0.085\*64) + 0.5) = 5.

= 1+5/64 = 1.078.

 $= (4*10^6)/(16*1.078) = 231911$  / .

= (231911-230400)/230400 \* 100% = 0.656%.

UARTBFRD = 1/64\*100% = 1.56%.

m = 1,

64

( 362)

UARTCLK = 7.3728

,

**UARTFBRD** 

Таблица 362 – Коэффициенты деления при частоте UARTCLK = 7.3728 МГц

| Коэффициент деления | Скорость передачи данных |
|---------------------|--------------------------|
| 0x0001              | 460800                   |
| 0x0002              | 230400                   |
| 0x0004              | 115200                   |
| 0x0006              | 76800                    |
| 0x0008              | 57600                    |
| 0x000C              | 38400                    |
| 0x0018              | 19200                    |
| 0x0020              | 14400                    |
| 0x0030              | 9600                     |
| 0x00C0              | 2400                     |
| 0x0180              | 1200                     |
| 0x105D              | 110                      |

# UARTCLK = 4

# Таблица 363 – Коэффициенты деления при частоте UARTCLK = 4 МГц

|             |               | = =                   | <del>-</del>         |           |
|-------------|---------------|-----------------------|----------------------|-----------|
| Целая часть | Дробная часть | Требуемая<br>скорость | Реальная<br>скорость | Ошибка, % |
| 0x001       | 0x05          | 230400                | 231911               | 0.656     |
| 0x002       | 0x0B          | 115200                | 115101               | 0.086     |
| 0x003       | 0x10          | 76800                 | 76923                | 0.160     |
| 0x006       | 0x21          | 38400                 | 38369                | 0.081     |
| 0x011       | 0x17          | 14400                 | 14401                | 0.007     |
| 0x068       | 0x0B          | 2400                  | 2400                 | ~ 0       |
| 0x8E0       | 0x2F          | 110                   | 110                  | ~ 0       |

# 28.9.9 MDR\_UARTx->LCR\_H

29 22 UARTLCR.

UARTLCR\_H

364 UARTLCR\_H.

# Таблица 364 – Регистр UARTLCR\_H

| No   | Функциональное |                                              |          |                        |                     |
|------|----------------|----------------------------------------------|----------|------------------------|---------------------|
| бита | имя бита       | назначения и принимаемых значений            |          |                        |                     |
| 158  |                |                                              |          |                        |                     |
| 7    | SPS            | 0 -<br>1 -<br>EPS,                           | ;<br>SPS | . (<br>1, EPS=1 –<br>, | EPS=0<br>0).<br>PEN |
| 65   | WLEN           | 0b11 - 8<br>0b10 - 7<br>0b01 - 6<br>0b00 - 5 | -<br>:   |                        |                     |
| 4    | FEN            | 0 - ;<br>1 -                                 | FIFO     |                        |                     |
| 3    | STP2           | 0 –<br>1 –                                   | ;        | •                      |                     |
| 2    | EPS            | 0 -<br>1 -                                   | PEN      | ;<br>EPS               | ,                   |
| 1    | PEN            | 0 –<br>1 –                                   |          | ;                      |                     |
| 0    | BRK            |                                              | ,        | 1,<br>UARTTXD<br>,     |                     |
|      |                |                                              | 0        |                        |                     |

| 30-                    |                        | UARTLCR_H, UARTUARTLCR, | TIBRD UARTFBRE           | ,         |
|------------------------|------------------------|-------------------------|--------------------------|-----------|
| UAR                    | TLCR_H.                | , ,                     |                          |           |
| UARTIBRD<br>UARTLCR_H. | / UARTFI               | BRD                     | ,                        |           |
| Примеч                 | <u>ания:</u>           |                         |                          |           |
| -<br>-                 | UARTIBRD,<br>UARTFBRD, | UARTFBRD,<br>UARTIBRD,  | UARTLCR_H;<br>UARTLCR_H. |           |
| UARTFBRD)<br>-         | ,<br>UARTIBRD (        | UARTFBRD),              | :<br>UARTLCR_H.          | (UARTIBRD |
| PEN, EPS SP            | 365<br>S               | UART                    | LCR H.                   |           |

#### Таблица 365 – Управление режимом контроля четности

| PEN | EPS | SPS | Бит контроля четности |  |  |  |
|-----|-----|-----|-----------------------|--|--|--|
| 0   | X   | X   | ,                     |  |  |  |
| 1   | 1   | 0   |                       |  |  |  |
| 1   | 0   | 0   |                       |  |  |  |
| 1   | 0   | 1   | 1                     |  |  |  |
| 1   | 1   | 1   | 0                     |  |  |  |

 Примечания:
 UARTLCR\_H, UARTIBRD
 :

 ;

 (

 FIFO
 :

 BRK;
 .

 FIFO
 .

## 28.9.10 MDR\_UARTx->CR

, 9 8 . 9 8

### Таблица 366 – Регистр управления UARTCR

| No   | Функциональное | Расшифровка функционального имени бита, краткое описание |  |  |  |
|------|----------------|----------------------------------------------------------|--|--|--|
| бита | имя бита       | назначения и принимаемых значений                        |  |  |  |
| 15   | CTSEn          | CTS.                                                     |  |  |  |
|      |                | 1 – ,                                                    |  |  |  |
|      |                | nUARTCTS.                                                |  |  |  |
| 14   | RTSEn          | RTS.                                                     |  |  |  |
|      |                | 1 –                                                      |  |  |  |
|      |                | FIFO                                                     |  |  |  |
| 13   | Out2           | nUARTOut2.                                               |  |  |  |
|      |                | (DTE)                                                    |  |  |  |
|      |                | « ` ´ » (RI)                                             |  |  |  |
| 12   | Out1           | nUARTOut1.                                               |  |  |  |
|      |                | (DTE)                                                    |  |  |  |
|      |                | «                                                        |  |  |  |
|      |                | » (DCD)                                                  |  |  |  |
| 11   | RTS            | nUARTRTS                                                 |  |  |  |
| 10   | DTR            | nUARTDTR                                                 |  |  |  |
| 9    | RXE            | . 1 .                                                    |  |  |  |
|      |                | , SIR,                                                   |  |  |  |
|      |                | , SIREN.                                                 |  |  |  |
|      |                | GIVELV.                                                  |  |  |  |
|      |                | ,                                                        |  |  |  |
|      |                | ,                                                        |  |  |  |
| 8    | TXE            | . 1                                                      |  |  |  |
|      |                | •                                                        |  |  |  |
|      |                | , CIDEN                                                  |  |  |  |
|      |                | SIR, SIREN.                                              |  |  |  |
|      |                |                                                          |  |  |  |
|      |                | ,                                                        |  |  |  |
|      |                |                                                          |  |  |  |

| No   | Функциональное | Расшифровка функционального имени бита, кр                     | оаткое описание                         |
|------|----------------|----------------------------------------------------------------|-----------------------------------------|
| бита | имя бита       | назначения и принимаемых значений                              |                                         |
| 7    | LBE            | 0 - ;<br>1                                                     |                                         |
|      |                | SIREN=1 UARTTCR SIRTEST=1, nSIROUT SIRTEST 1 , SIRTEST , SIRTE | SIRIN.<br>SIR.<br>EST                   |
|      |                | 0.<br>SIRTEST=0,<br>UARTRXD.<br>SIR, UART,                     | UARTTXD                                 |
|      |                | . 0                                                            |                                         |
| 63   |                |                                                                |                                         |
| 2    | SIRLP          | 0 – ;<br>1 –<br>IrLPBaud16                                     | :<br>3/16<br>,                          |
| 1    | SIREN          | 0 nSIROUT SIRIN . 1 SIRIN. UART                                | DA SIR:<br>,<br>nSIROUT<br>TXD<br>RTRXD |
| 0    | UARTEN         | 0                                                              |                                         |
|      | Іпимечание —   | , SIREN                                                        | SIR,                                    |

```
      Примечание
      —
      ,

      1
      TXE UARTEN.
      ,

      Примечание
      —
      ;

      —
      ;
      ;

      —
      /
      ;

      —
      UARTCR;

      —
      .
```

## 28.9.11 MDR\_UARTx->IFLS

**FIFO** 

UARTTXINTR UARTRXINTR,

**UARTIFLS** 

#### Таблица 367 – Регистр UARTIFLS

| №    | Функциональное | Расшифровка функционального имени бита, краткое описание |                                   |      |       |      |  |  |
|------|----------------|----------------------------------------------------------|-----------------------------------|------|-------|------|--|--|
| бита | имя бита       | назначения и пр                                          | назначения и принимаемых значений |      |       |      |  |  |
| 316  |                | •                                                        |                                   |      |       |      |  |  |
| 53   | RXIFLSEL       |                                                          |                                   |      |       | :    |  |  |
|      |                | b000 =                                                   | 1/8                               |      |       |      |  |  |
|      |                | b001 =                                                   | 1/4                               |      |       |      |  |  |
|      |                | b010 =                                                   | 1/2                               |      |       |      |  |  |
|      |                | b011 =                                                   | 3/4                               |      |       |      |  |  |
|      |                | b100 =                                                   | 7/8                               |      |       |      |  |  |
|      |                | b101-b111 =                                              |                                   |      |       |      |  |  |
| 20   | TXIFLSEL       |                                                          |                                   |      |       | :    |  |  |
|      |                | b000 =                                                   | 1/8                               |      |       |      |  |  |
|      |                | b001 =                                                   | 1/4                               |      |       |      |  |  |
|      |                | b010 =                                                   | 1/2                               |      |       |      |  |  |
|      |                | b011 =                                                   | 3/4                               |      |       |      |  |  |
|      |                | b100 =                                                   | 7/8                               |      |       |      |  |  |
|      |                | b101-b111 =                                              |                                   |      |       |      |  |  |
|      |                |                                                          |                                   |      |       |      |  |  |
|      |                |                                                          | ,                                 | ,    |       |      |  |  |
|      |                |                                                          | , ,                               |      | FIFO, |      |  |  |
|      |                |                                                          |                                   |      |       | ,    |  |  |
|      |                |                                                          |                                   |      |       | UART |  |  |
|      |                |                                                          |                                   | FIFO |       | ,    |  |  |
|      |                |                                                          |                                   |      |       |      |  |  |
|      |                |                                                          |                                   |      |       |      |  |  |

## 28.9.12 MDR\_UARTx->IMSC

#### **UARTIMSC**

### Таблица 368 – Регистр UARTIMSC

| №    | Функциональное |                                   |  |  |  |
|------|----------------|-----------------------------------|--|--|--|
| бита | имя бита       | назначения и принимаемых значений |  |  |  |
| 3111 |                |                                   |  |  |  |
|      |                |                                   |  |  |  |
| 10   | OEIM           | UARTOEINTR:                       |  |  |  |
|      |                | 1 – ;                             |  |  |  |
|      |                | 0 –                               |  |  |  |
| 9    | BEIM           | UARTBEINTR:                       |  |  |  |
|      |                | 1-;                               |  |  |  |
|      | DEB (          | 0 –                               |  |  |  |
| 8    | PEIM           | UARTPEINTR:                       |  |  |  |
|      |                | 1-;                               |  |  |  |
|      |                | 0 –                               |  |  |  |
| 7    | FEIM           | UARTFEINTR:                       |  |  |  |
|      |                | 1 – ;                             |  |  |  |
|      | DTD/           | 0 –                               |  |  |  |
| 6    | RTIM           | UARTRTINTR:<br>1 – ;              |  |  |  |
|      |                | 1 – ;<br>0 –                      |  |  |  |
| 5    | TXIM           | UARTTXINTR.                       |  |  |  |
| 3    | I Alivi        | 1 .                               |  |  |  |
|      |                | 1 — ,<br>0 —                      |  |  |  |
| 4    | RXIM           | UARTRXINTR.                       |  |  |  |
| -    | KZIIVI         | 1                                 |  |  |  |
|      |                | 0 – ,                             |  |  |  |
| 3    | DSRMIM         | UARTDSRINTR                       |  |  |  |
|      |                | nUARTDSR:                         |  |  |  |
|      |                | 1- ;                              |  |  |  |
|      |                | 0 –                               |  |  |  |
| 2    | DCDMIM         | UARTDCDINTR                       |  |  |  |
|      |                | nUARTDCD:                         |  |  |  |
|      |                | 1 – ;                             |  |  |  |
|      |                | 0 –                               |  |  |  |
| 1    | CTSMIM         | UARTCTSINTR                       |  |  |  |
|      |                | nUARTCTS:                         |  |  |  |
|      |                | 1 – ;                             |  |  |  |
|      |                | 0 –                               |  |  |  |
| 0    | RIMIM          | UARTRIINTR                        |  |  |  |
|      |                | nUARTRI:                          |  |  |  |
|      |                | 1-;                               |  |  |  |
|      |                | 0 –                               |  |  |  |

## 28.9.13 MDR\_UARTx->RIS

# Таблица 369 – Регистр UARTRIS

| No   | Функциональное | Расшифровка функцион    | ального имени бита, краткое |
|------|----------------|-------------------------|-----------------------------|
| бита | имя бита       | описание назначения и п | гринимаемых значений        |
| 3111 |                |                         |                             |
| 10   | OERIS          |                         | UARTOEINTR                  |
| 9    | BERIS          |                         | UARTBEINTR                  |
| 8    | PERIS          | UARTPEINTR              |                             |
| 7    | FERIS          | UARTFEINTR              |                             |
| 6    | RTRIS          |                         | UARTRTINTR                  |
|      |                | RTRIS                   | UARTRTINTR                  |
|      |                | UARTIMSC.               | ,                           |
|      |                | UARTRIS                 | UARTMIS                     |
| 5    | TXRIS          |                         | UARTTXINTR                  |
| 4    | RXRIS          |                         | UARTRXINTR                  |
| 3    | DSRRMIS        | nUARTDSR                | UARTDSRINTR                 |
| 2    | DCDRMIS        | nUARTDCD                | UARTDCDINTR                 |
| 1    | CTSRMIS        | nUARTCTS                | UARTCTSINTR                 |
| 0    | RIRMIS         | nUARTRI                 | UARTRIINTR                  |

## 28.9.14 MDR\_UARTx->MIS

(

|   |     | , |         | , |  |
|---|-----|---|---------|---|--|
| 3 | 0), |   | ,<br>0. |   |  |

**UARTMIS** 

# Таблица 370 – Регистр UARTMIS

| No   | Функциональное              | Расшифровка функционального имени бита, краткое |
|------|-----------------------------|-------------------------------------------------|
| бита | ч упкциональное<br>имя бита | описание назначения и принимаемых значений      |
| 3111 | имя опта                    | описание назначения и принимаемых значении      |
| 3111 |                             | ·                                               |
| 10   | OE) HG                      | •                                               |
| 10   | OEMIS                       |                                                 |
|      |                             | UARTOEINTR                                      |
| 9    | BEMIS                       |                                                 |
|      |                             | UARTBEINTR                                      |
| 8    | PEMIS                       |                                                 |
|      |                             | UARTPEINTR                                      |
| 7    | FEMIS                       |                                                 |
|      |                             | UARTFEINTR                                      |
| 6    | RTMIS                       |                                                 |
|      | KIIVIIS                     | UARTRTINTR                                      |
| 5    | TXMIS                       | O/MATATION I                                    |
|      | TANIS                       | UARTTXINTR                                      |
| 4    | RXMIS                       | UARTIAINTR                                      |
| 4    | KAMIS                       | LIA DED VINED                                   |
|      | 5 65 1 6 66                 | UARTRXINTR                                      |
| 3    | DSRMMIS                     | UARTDSRINTR                                     |
|      |                             | nUARTDSR                                        |
| 2    | DCDMMIS                     | UARTDCDINTR                                     |
|      |                             | nUARTDCD                                        |
| 1    | CTSMMIS                     | UARTCTSINTR                                     |
|      |                             | nUARTCTS                                        |
| 0    | RIMMIS                      | UARTRIINTR                                      |
|      |                             | nUARTRI                                         |
|      |                             |                                                 |

## 28.9.15 MDR\_UARTx->ICR

1

#### **UARTICR**

# Таблица 371 – Регистр UARTICR

| №    | Функциональное | Расшифровка функционального имени бита, к  | раткое     |  |  |
|------|----------------|--------------------------------------------|------------|--|--|
| бита | имя бита       | описание назначения и принимаемых значений |            |  |  |
| 3111 |                |                                            |            |  |  |
|      |                |                                            |            |  |  |
| 10   | OEIC           | UAR                                        | TOEINTR    |  |  |
| 9    | BEIC           | UARTBEINT                                  | TR .       |  |  |
| 8    | PEIC           | Į.                                         | JARTPEINTR |  |  |
| 7    | FEIC           | U                                          | ARTFEINTR  |  |  |
| 6    | RTIC           | UA                                         | ARTRTINTR  |  |  |
| 5    | TXIC           | UARTTXINTR                                 |            |  |  |
| 4    | RXIC           | UARTRXINTR                                 |            |  |  |
| 3    | DSRMIC         | UARTDSRINTR                                |            |  |  |
|      |                | nUARTDSR                                   |            |  |  |
| 2    | DCDMIC         | UARTDCDINTR                                |            |  |  |
|      |                | nUARTDCD                                   |            |  |  |
| 1    | CTSMIC         | UARTCTSINTR                                |            |  |  |
|      |                | nUARTCTS                                   |            |  |  |
| 0    | RIMIC          | UARTRIINTR                                 | nUARTRI    |  |  |

## 28.9.16 MDR\_UARTx->DMACR

.

#### **UARTDMACR**

### Таблица 372 – Регистр UARTDMACR

| №    | •        | Расшифровка функционального имени бита, краткое |     |  |  |
|------|----------|-------------------------------------------------|-----|--|--|
| бита | имя бита | описание назначения и принимаемых значений      |     |  |  |
| 313  |          |                                                 |     |  |  |
|      |          | •                                               |     |  |  |
| 2    | DMAONERR | 1,                                              |     |  |  |
|      |          |                                                 | DMA |  |  |
|      |          | UARTRXDMASREQ UARTRXDMABREQ                     |     |  |  |
| 1    | TXDMAE   | DMA .                                           | 1,  |  |  |
|      |          | DMA                                             |     |  |  |
|      |          | FIFO                                            |     |  |  |
| 0    | RXDMAE   | DMA .                                           | 1,  |  |  |
|      |          | DMA                                             | •   |  |  |
|      |          | FIFO                                            |     |  |  |

# 29 Контроллер прямого доступа в память MDR\_DMA

# 29.1 Основные свойства контроллера DMA

# 29.2 Термины и определения

. Таблица 373 – Термины и определения

|                              |               |                 | 1 aomini | (а 373 – Термин | ім и опреде |     |
|------------------------------|---------------|-----------------|----------|-----------------|-------------|-----|
| Альтернативная               |               | »)              | ( .      | «               | ·           |     |
| C                            | =1 -<br>=23 - | DMA 1<br>DMA 23 |          |                 | :           |     |
| Канал                        | DMA ,         |                 |          |                 |             | 32. |
| Управляющие данные<br>канала |               |                 |          | ,<br>DMA        |             | ,   |
|                              | Примеча       | <u>иние</u> –   | •        |                 |             |     |

| Цикл DMA                                   | DMA,<br>N                |                  |
|--------------------------------------------|--------------------------|------------------|
| Передача DMA                               | ,<br>DMA,                | •                |
| Пинг-понг                                  | DMA<br>DMA,              | DMA,<br>DMA,     |
|                                            | « »                      | ,                |
| Первичная                                  | ,<br>chnl_pri_alt_set 0. | •                |
| R                                          | 2,<br>1 1024<br>0 2 10   | DMA,<br>DMA<br>2 |
|                                            | ,                        | 4 DMA ,          |
|                                            |                          | DMA,             |
| Исполнение с<br>изменением<br>конфигурации | , 4 DMA<br>, DMA,        | ,                |
|                                            | ,                        | dma_done,        |

# 29.3 Функциональное описание

121) APB block AHB block APB AHB-Lite DMA data Configuration memory master control mapped transfer interface registers Requests Active channel Stall Channel done ► Error Mode: DMA control block

Рисунок 121. Структурная схема контроллера

- , APB;
- , AHB;
- DMA.

#### 29.3.1 Распределение каналов DMA

Таблица 374 – Распределение каналов DMA

| Номер<br>канала | Источник sreg | Источник reg | Тип | Описание   |
|-----------------|---------------|--------------|-----|------------|
| 0               | UART1 TX      | UART1 TX     |     | DMA UART1  |
| 1               | UART1 RX      | UART1 RX     |     | DMA UART1  |
| 2               | UART2 TX      | UART2 TX     |     | DMA UART2  |
| 3               | UART2 RX      | UART2 RX     |     | DMA UART2  |
| 4               | SSP1 TX       | SSP1 TX      |     | DMA SSP1   |
| 5               | SSP1 RX       | SSP1 RX      |     | DMA SSP1   |
| 6               | SSP2 TX       | SSP2 TX      |     | DMA SSP2   |
| 7               | SSP2 RX       | SSP2 RX      |     | DMA SSP2   |
| 8               | ADC0_EC       | -            |     | DMA 1      |
| 9               | ADC1_EC       | -            |     | DMA 2      |
| 10              | TIMER1        | -            |     | DMA Timer1 |
| 11              | TIMER2        | -            |     | DMA Timer2 |
| 12              | TIMER3        | -            |     | DMA Timer3 |
| 13              | -             | -            |     |            |
| 14              | -             | -            |     |            |
| 15              | -             | -            |     |            |
| 16              | -             | -            |     |            |
| 17              | -             | -            |     |            |
| 18              | -             | -            |     |            |
| 19              | -             | -            |     |            |
| 20              | -             | -            |     |            |
| 21              | -             | -            |     |            |
| 22              | -             | -            |     |            |

| Номер<br>канала | Источник sreg | Источник reg | Тип | Описание |
|-----------------|---------------|--------------|-----|----------|
| 23              | -             | -            |     |          |
| 24              | -             | -            |     |          |
| 25              | -             | -            |     |          |
| 26              | -             | -            |     |          |
| 27              | -             | -            |     |          |
| 28              | -             | -            |     |          |
| 29              | -             | -            |     |          |
| 30              | -             | -            |     |          |
| 31              | -             | -            |     |          |

# 29.3.2 Блок, подключенный к шине АРВ APB Блок, подключенный к шине АНВ 29.3.3 DMA Bus, 32-AHB. Управляющий блок DMA 29.3.4 DMA Bus; DMA; DMA; DMA DMA 29.3.5 Типы передач AHB, DMA AHB, 29.3.6 Разрядность передач данных 8, 16 32

HSIZE.

Таблица 375 – Комбинации шины HSIZE

| HSIZE[2]*) | HSIZE[1] | HSIZE[0] | Разрядность данных<br>(бит) |
|------------|----------|----------|-----------------------------|
| 0          | 0        | 0        | 8                           |
| 0          | 0        | 1        | 16                          |
|            | 1        | 0        | 32                          |
|            | 1        | 1        | **)                         |

\*\*)\_

32-

#### 29.3.7 Управление защитой данных

AHB-Lite,

HPROT[3:1].

- ;

\_

376

HPROT.

Таблица 376 – Режимы защиты данных

| <b>HPROT[3]</b><br>Кэширование | HPROT[2]<br>буферизация | HPROT[1]<br>Привилегиро-<br>ванный | HPROT[0]<br>Данные/команда | Описание |
|--------------------------------|-------------------------|------------------------------------|----------------------------|----------|
| -                              | -                       | -                                  | 1*)                        |          |
| -                              | -                       | 0                                  | -                          |          |
| -                              | -                       | 1                                  | -                          |          |
| -                              | 0                       | -                                  | -                          |          |
| -                              | 1                       | -                                  | -                          |          |
| 0                              | -                       | -                                  | -                          |          |
| 1                              | -                       | -                                  | -                          |          |

\*) - HPROT[0]

DMA

"

DMA

DMA.

#### 29.3.8 Инкремент адреса

».

Таблица 377 – Инкремент адреса

| Разрядность данных | Величина инкремента |
|--------------------|---------------------|
| 8                  | , ,                 |
| 16                 | ,                   |
| 32                 |                     |

. <u>Примечание</u> — , , FIFO, ( . «

# 29.4 Управление DMA

#### 29.4.1 Правила обмена данными

Таблица 378 – Правила, при которых передача данных по каналам разрешена, и запросы не маскируются

| Правило | Описан             | ие                       |
|---------|--------------------|--------------------------|
| 1       | dma_active[C] 0,   | 1 dma_req[C] dma_sreq[C] |
|         | halk,              | ,                        |
| 2       | 1                  | dma_active[C]            |
| 3       | 1 dma_active[C]    |                          |
| 4       | DMA,               | «                        |
|         | », dma_active[C]   | 1 ,                      |
|         | ,                  | $2^{R}$ ,                |
|         | n_minus_1.         |                          |
|         | <b>«</b>           | », dma_active[C]         |
|         | 1                  | DMA ,                    |
|         | o <sup>p</sup>     | . ,                      |
|         | 2 <sup>R</sup> ,   |                          |
|         | , 2 <sup>R</sup> ( | , n_minus_1),            |
|         | , 2 (              | <i>,</i>                 |
|         | dma_active[C]      | 0                        |

| Правило  | Описание                                           |
|----------|----------------------------------------------------|
| 5        | dma_active[C] 0 hdk                                |
|          | , dma_active[C] dma_active[] 1                     |
| 6        | ,                                                  |
|          | 1 dma_done[]                                       |
| 7        | dma_req[C] 1 , dma_active[C]                       |
|          | dma_stall 1, ,                                     |
| 8        | cycle_ctrl 3'b100, 3'b101, 3'b110,                 |
|          | 3'b111, dma_done[C] 1                              |
| 9        | , cycle_ctrl                                       |
|          | dma_done[C], dma_active[] :                        |
|          | - dma_stall 0, dma_done[] 1                        |
|          | hclk                                               |
|          | - dma_stall 1, , , dma_stall 0, dma_done[] 1       |
|          | dma_stall 0, dma_done[] 1 hclk                     |
| 10       | dma_waitonreq[C] .                                 |
| 11       | dma_waitonreq[C] 1, dma_active[C]                  |
| 11       |                                                    |
|          | $ 2^{\mathrm{R}}$ (                                |
|          | n_minus_1);                                        |
|          |                                                    |
|          | - dma_sreq[C] 0                                    |
| 12       | hclk dma_active[C] 0 dma_stall                     |
|          | 1,                                                 |
|          | _ dma_active[C] 0 hclk;                            |
|          | _                                                  |
| 13       | dma_sreq[C], dma_waitonreq[C] 0                    |
| 14       | dma_sreq[C], chnl_useburst_set[C] 1*)              |
| 15       | DMA, «                                             |
|          | », 2 <sup>R</sup>                                  |
|          | chnl_useburst_set[C] 0,                            |
|          | , <b>2</b> <sup>R</sup> .                          |
|          | « »                                                |
|          | chnl_useburst_set[C] 0 ,                           |
|          | OR.                                                |
| 16       | , 2 <sup>R</sup> .  DMA. «                         |
| 16       | ,                                                  |
|          | <u> </u>                                           |
|          | dma_sreq[C] dma_waitonreq[C] 1 dma_req[C] 0, DMA . |
|          | « »,                                               |
|          | hclk dma_active[C] 1 dma_sreq[C] dma_waitonreq[C]  |
|          | 1 dma_req[C] 0, 2 <sup>R</sup>                     |
|          |                                                    |
|          | ,                                                  |
|          |                                                    |
| <u> </u> |                                                    |

| Правило |                  |               | Описание  |        |               |    |
|---------|------------------|---------------|-----------|--------|---------------|----|
| 17      |                  | DMA,          |           |        | <b>«</b>      |    |
|         |                  | »,            |           | hclk   | dma_active[C] | 1, |
|         | dma_sreq[C]      | dma_req[C]    |           | 1,     |               |    |
|         | dma_req[c],      |               | $2^{R}$ ( |        | ,             |    |
|         | n_minus_1) DMA   |               |           |        |               |    |
|         |                  | <b>«</b>      |           |        | »,            |    |
|         | hclk             | dma_active[C] | 1 dma_sr  | req[C] |               | 1, |
|         |                  | dma_          | _req[c],  |        | $2^{R}$       |    |
|         |                  |               |           |        | ,             |    |
|         | _                |               |           |        | ,             |    |
|         | 2 <sup>R</sup> ( | ,             |           |        | n_minus_1),   |    |
|         |                  |               |           |        |               |    |
| 18      | chnl_req_m       |               | 1,        |        |               |    |
|         | dma_sreq[C]      | a_req[C]      |           |        |               |    |

Таблица 379 – Правила осуществления DMA передач при «запрещенных» каналах

| Правило | Описание                                                  |                     |
|---------|-----------------------------------------------------------|---------------------|
| 19      | dma_req[C] 1,                                             | dma_done[C] 1.      |
|         | ( )                                                       | 1                   |
| 20      | dma_sreq[C] 1,<br>dma_waitonreq[C] 1 chnl_useburst_set[C] | dma_done[C] 1<br>0. |
|         | ( )                                                       | ,                   |
| 21      | dma_active[C] 0                                           |                     |

## 29.4.2 Диаграммы работы контроллера DMA

**DMA** 

#### 29.4.2.1 Импульсный запрос на обработку

122

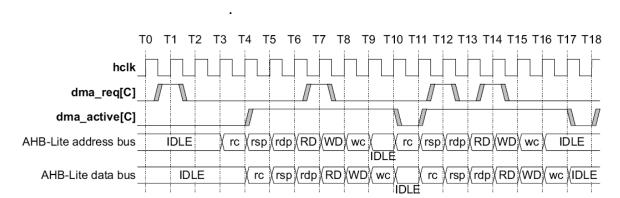
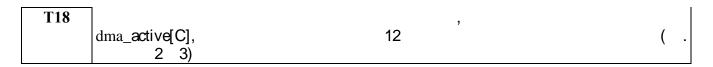
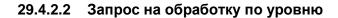





Рисунок **122.** Диаграмма работы при получении импульсного запроса ( 122) .

Таблица 380 – Пояснения к диаграмме работы при получении импульсного запроса

|           | ,, <u>I</u>            | mme padorbi upu nony tenun mmyabendro sampoea     |
|-----------|------------------------|---------------------------------------------------|
| T1        | chnl_req_mask_set[C]   | ( . 1) ,<br>0 ( . 18)                             |
| <b>T4</b> |                        | active[C] ( . 2 3) DMA                            |
| T4-T7     |                        |                                                   |
| 14-1/     | rc — , chan            | , .<br>annel_cfg;                                 |
|           | rsp –                  | , src_data_end_ptr;                               |
| T7        | rdp – dma_active[C]    | , dst_data_end_ptr<br>C] 1 , chnl_req_mask_set[C] |
| 1,        | 0,                     | , siii_isq_nas_si[s]                              |
|           | ( . 7).                |                                                   |
| Т7-Т9     | DI                     | DMA , :                                           |
|           | RD – ;                 |                                                   |
| T9-T10    | WD –                   | , channel_cfg,                                    |
|           | wc – , channe          | nel_cfg                                           |
| T10       | DMA ( . 4)             | ma_active[C],                                     |
| T10-T11   | dma_active             | re[C] hdk ( . 5)                                  |
| T11       | dma_cativalCl          | 7 ( .                                             |
|           | dma_active[C],<br>2 3) | ( .                                               |
| T12       | dma_active[C]          | C] 1 , chnl_req_mask_set[C]                       |
|           | 0,<br>( . 7).          |                                                   |
| T14       |                        |                                                   |
| T14       | 12                     | - ,                                               |
| T17       | dma                    | ma_active[C],                                     |
| T17-T18   | DMA ( . 4) dma_acti    | tive[C], , hdk ( .                                |
| 11, 110   | 5)                     | urvącj, , nak ( .                                 |





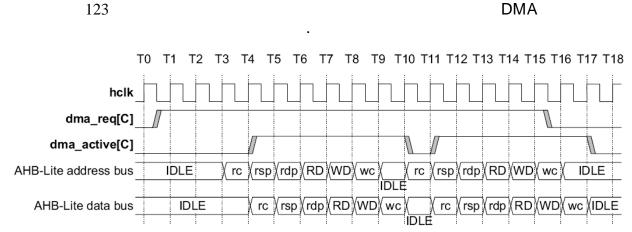



Рисунок 123. Диаграмма работы при получении запроса на обработку по уровню.

123 381.

Таблица 381 – Пояснения к диаграмме работы при получении запроса на обработку по уровню

| T1        |                     |                   | ( 378,              | 1)    |
|-----------|---------------------|-------------------|---------------------|-------|
| 11        | chal rea r          | mask_set[C]       | 0 ( . 18)           | ')    |
| <b>T4</b> | , cnni_req_r        | dma_active[C] (   | ,                   | DMA   |
| 14        |                     | dilla_active[C] ( | . 2 3)              | DIVIA |
| T4 T7     |                     |                   |                     |       |
| T4-T7     |                     | abannal afar      | , -                 |       |
|           | rc –                | , channel_cfg;    | are data and atm    |       |
|           | rsp –               |                   | , src_data_end_ptr; |       |
| TO # TO 0 | rdp -               | D. 14.4           | , dst_data_end_ptr  |       |
| T7-T9     | n n                 | DMA               | , :                 |       |
|           | RD –                |                   |                     |       |
|           | WD –                |                   |                     |       |
| T9-T10    |                     |                   | , channel_cfg,      |       |
|           | wc –                | , channel_cfg     |                     |       |
| T10       |                     | dma_active[C],    |                     |       |
|           | DMA ( . 4).         |                   |                     |       |
|           |                     |                   | ( . 1)              | ,     |
|           | chnl_req_mask_set[( |                   | 0 ( . 18).          |       |
| T10-T11   |                     | dma_active[C]     | hdk( .              | 5)    |
| T11       |                     |                   | ,                   |       |
|           | dma_active[C]       | DMA               |                     |       |
| T11-T14   |                     |                   |                     |       |
| T14-T16   |                     | DMA               |                     |       |
| T15-T16   |                     | ,                 | DMA                 |       |
|           | dma_req[C]          |                   |                     |       |
| T16-T17   | <b>4</b>            |                   | channel_cfg         |       |
| T17       |                     | dma_active[C],    | _ 3                 |       |
|           | DMA ( . 4)          |                   |                     |       |

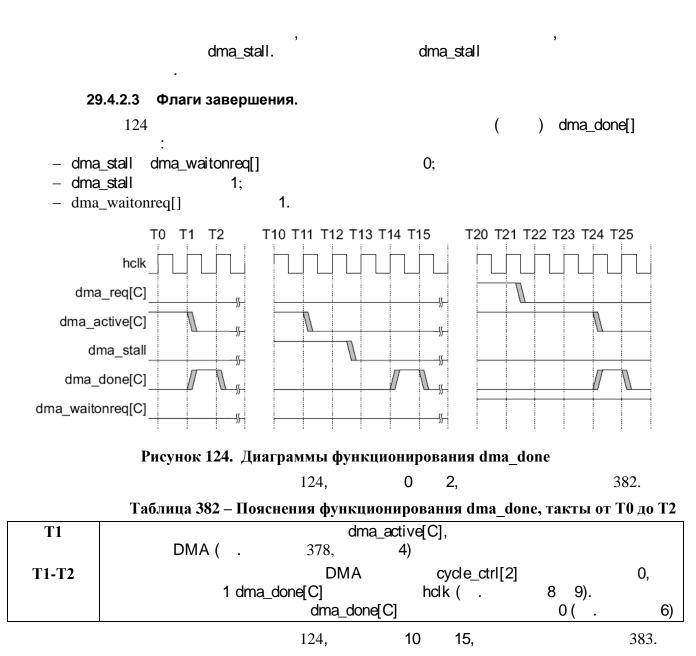



Таблица 383 – Пояснения функционирования dma\_done, такты от T10 до T15

| T11     | dma_active[C],               |    |
|---------|------------------------------|----|
|         | DMA ( . 4)                   |    |
| T12-T13 | dma_stal1                    |    |
| T14-T15 | DMA cycle_ctrl[2]            | 0, |
|         | 1 dma_done[C] hclk ( . 8 9). |    |
|         | dma_done[C] 0 ( .            | 6) |

 $\underline{\mathit{Примечаниe}\ \kappa\ T11}$ : dma\_done[C], dma\_stall 1 hclk ( . 9 12).

124, 20 25, .

| Таблица 384 – Пояснения функционирования dma done, такты от T20 до T25 |
|------------------------------------------------------------------------|
|------------------------------------------------------------------------|

| T20     | DMA, -                              | 1    |
|---------|-------------------------------------|------|
|         | dma_waitonreq[C] 0 dma_req[C]       | ,    |
|         | dma_active[C] ( . 11) dma_done[C] ( | . 9) |
| T21-T25 | dma_req[C]                          |      |
| T24     | dma_active[C],                      |      |
|         | DMA ( . 4)                          |      |
| T24-T25 | DMA , cycle_ctrl[2]                 | 0,   |
|         | 1 dma_done[C] hdk( . 8              | 9).  |
|         | dma_done[C] 0 (                     | . 6) |

#### 29.4.2.4 Флаги ожидания запроса на обработку

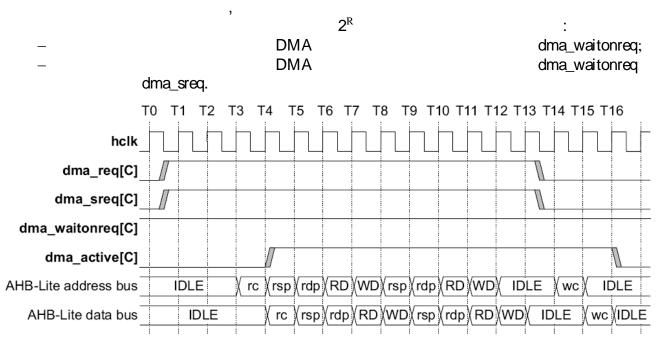
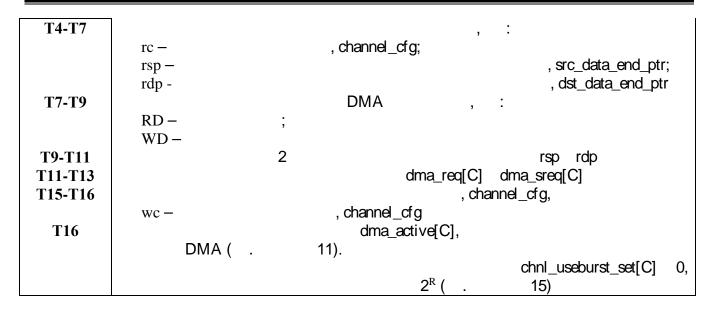




Рисунок 125. Диаграмма работы контроллера DMA при использовании dma\_waitonreq

( 125) 385.

Таблица 385 – Пояснения работы контроллера DMA при использовании dma waitonreq

| T0-T16    |     |                      | dma_waitonreq[C] |   |
|-----------|-----|----------------------|------------------|---|
|           | ( . | 10)                  |                  |   |
| T0-T1     |     |                      | ( . 1)           |   |
|           | ,   | chnl_req_mask_set[C] | 0 ( . 18)        |   |
| T3-T4     |     | dma_req[C]           | dma_sreq[C] 1.   |   |
|           |     | dma_sreq[C]          | dma_req[C] ( .   |   |
|           | 16  | 17)                  |                  |   |
| <b>T4</b> |     | dma_active[C](       | . 2 3) DMA       | ı |
|           |     |                      |                  |   |



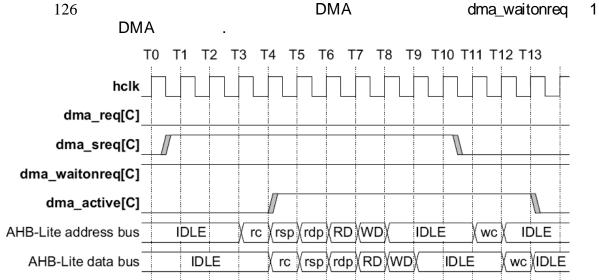
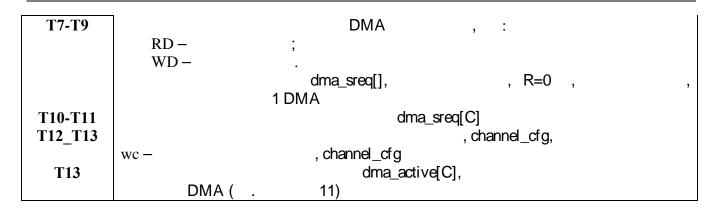




Рисунок 126. Работа DMA при использовании dma\_waitonreq совместно с dma\_sreq

126 386.

Таблица 386 – Пояснения работы DMA при использовании dma\_waitonreq совместно с dma sreq

| T0-T13         |                        | 10)                                  | dma_waitonreq[C | )                            |
|----------------|------------------------|--------------------------------------|-----------------|------------------------------|
| T0-T1<br>T3-T4 | ,                      | chnl_useburst_set[C]                 | 0(              | 1)<br>13 14)                 |
| T4             |                        | dma_sreq[C] ( .<br>dma_active[C] ( . | 16)<br>2 3)     | DMA                          |
| T4-T7          | ***                    | channel of a                         | , :             |                              |
|                | rc –<br>rsp –<br>rdp - | , channel_cfg;                       |                 | ata_end_ptr;<br>data_end_ptr |



#### 29.4.3 Правила арбитража DMA

DMA.

.

387

Таблица 387 – Периодичность арбитража в единицах передач по шине АНВ

| Значение <b>R</b> | Периодичность арбитража каждые х передач DMA |
|-------------------|----------------------------------------------|
| b0000             | 1                                            |
| b0001             | 2                                            |
| b0010             | 4                                            |
| b0011             | 8                                            |
| b0100             | 16                                           |
| b0101             | 32                                           |
| b0110             | 64                                           |
| b0111             | 128                                          |
| b1000             | 256                                          |
| b1001             | 512                                          |
| b1010-b1111       | 1024                                         |

#### 29.4.4 Приоритет

|      | . Таблица 388      |   |   | DMA |
|------|--------------------|---|---|-----|
|      | 0                  | , |   |     |
|      | chnl_priority_set. |   |   |     |
|      |                    |   | ( | )   |
| _    | ,                  | • | , | ,   |
| _    |                    |   |   |     |
| DMA. | :                  |   |   |     |

Таблица 388 – Уровень приоритета каналов DMA

|                                                | Tuominga 200 t | Jobenb nphophrera Ranasiob i                                   |  |
|------------------------------------------------|----------------|----------------------------------------------------------------|--|
| Уровень приоритета<br>в порядке его уменьшения | Номер канала   | Уровень приоритета<br>установленный битом<br>chnl_priority_set |  |
|                                                | 0              |                                                                |  |
| -                                              | 1              |                                                                |  |
| -                                              | 2              |                                                                |  |
|                                                |                |                                                                |  |
| -                                              | 30             |                                                                |  |
| -                                              | 31             |                                                                |  |
| -                                              | 0              | ( )                                                            |  |
| -                                              | 1              | ( )                                                            |  |
| -                                              | 2              | ( )                                                            |  |
|                                                |                |                                                                |  |
| -                                              | 30             | ( )                                                            |  |
|                                                | 31             | ( )                                                            |  |

DMA 127

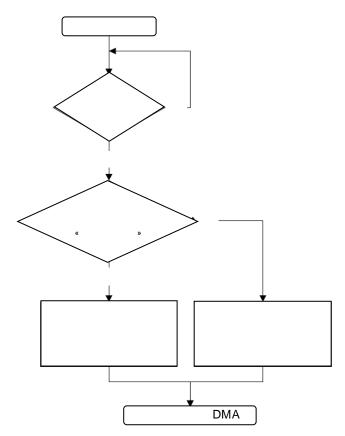



Рисунок 127. Алгоритм выбора следующего канала для обслуживания

#### 29.4.5 Типы циклов DMA

cycle\_ctrl , DMA.

Таблица 389 – Типы циклов DMA

|            | 1 aointa 307 1 mili queito Dini |
|------------|---------------------------------|
| cycle_ctrl | Описание                        |
| b000       |                                 |
| b001       | DMA                             |
| b010       | -                               |
| b011       | « - »                           |
| b100       | « »                             |
| b101       | « »                             |
| b110       | « »                             |
| b111       | « »                             |

<u>Примечание</u> – cycle\_ctrl channel\_cfg – . « ».

|                | DMA                      |                 | 2 <sup>R</sup> DMA. |
|----------------|--------------------------|-----------------|---------------------|
| DMA            | . ,                      | ,<br>R,         | , 2 <sup>R</sup> ,  |
| _              | ;<br>;                   | DMA:            |                     |
| <br>- « -<br>- | ,<br>;<br>»;<br>«<br>«   |                 | »;<br>».            |
| Недейств       | ительный                 |                 |                     |
| «              | DMA<br>»                 | DN              | ΛA.                 |
| Основной       |                          |                 |                     |
| 1.             | , DMA , 2 <sup>R</sup> . | :               | , 0,                |
| 2.<br>_        | 3.<br>:                  | ,               |                     |
| -<br>(<br>3.   | ;<br>dma_done[C]         | ),<br>1<br>DMA. | 1.<br>hclk.         |
| Авто-зап       | poc                      | DWA.            |                     |
|                | ,                        | DMA.            |                     |
|                |                          |                 |                     |
| 1.             | , DMA<br>2R              | :               | , 0,                |
| 2.             | 3.                       |                 | -,                  |
|                | <u>:</u>                 | ,               |                     |

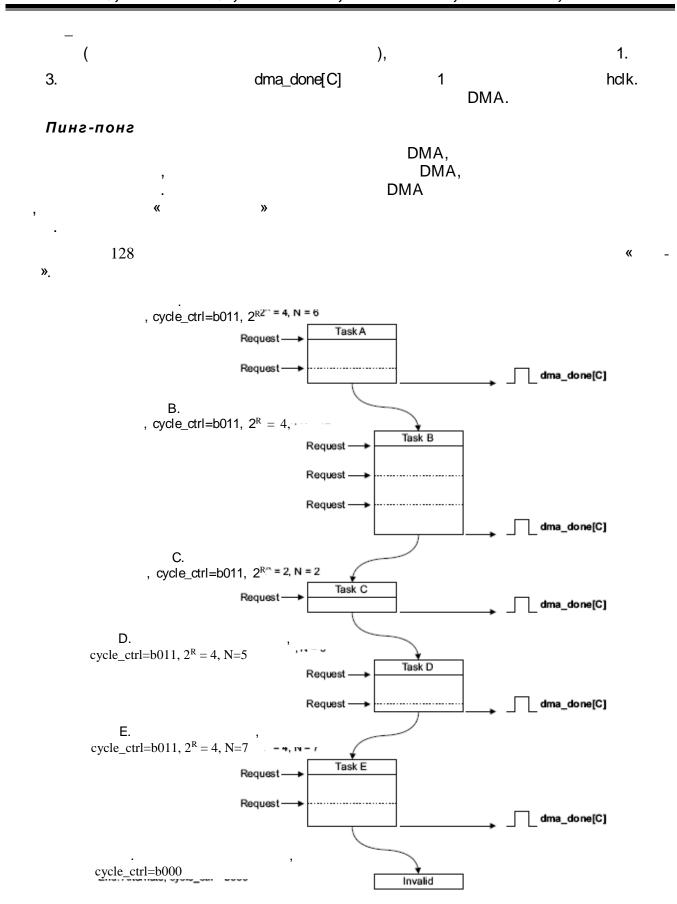
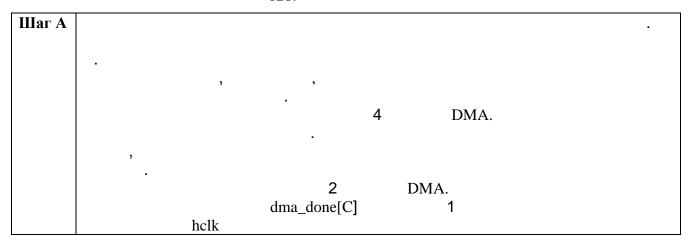




Рисунок 128. Пример функционирования контроллера в режиме «пинг-понг»

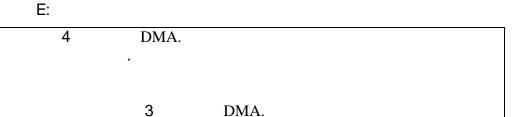




, ,

.

D.


:

| Шаг С | 2 DMA.        |
|-------|---------------|
|       | dma_done[C] 1 |
|       | hclk          |

E.

D:

| Шаг D | 4 DMA.        |
|-------|---------------|
|       |               |
|       |               |
|       | DMA.          |
|       |               |
|       | dma_done[C] 1 |
|       | hclk          |



b000,

**DMA** 

DM»

dma\_done[C] 1
hclk

cycle\_ctrl

cycle\_ctrl 3'b001.

D

Шаг Е

<u>29.4.5.1</u> Режим работы с памятью «исполнение с изменением конфигурации»

, , 4 DMA, . . .

DMA, 4 DMA,

<u>Примечание</u> – N

cycle\_ctrl 3'b000.

dma\_done[C] ,

DMA .

channel\_cfg, , 390 ,

Таблица 390 — Channel\_cfg для первичной структуры управляющих данных в режиме работы с памятью «исполнение с изменением конфигурации»

| № бита       | Обозначение                       | Значение | Описание |  |  |  |  |
|--------------|-----------------------------------|----------|----------|--|--|--|--|
|              | Области с константными значениями |          |          |  |  |  |  |
| <b>31</b> 30 | dst_inc                           | b' 10    |          |  |  |  |  |
| 2928         | dst_size                          | b' 10    |          |  |  |  |  |
| 2726         | src_inc                           | b' 10    |          |  |  |  |  |
| 2524         | src_size                          | b' 10    |          |  |  |  |  |
| 1714         | R_power                           | b' 0010  | 4 DMA    |  |  |  |  |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| № бита   | Обозначение                       | Значение    | Опис                         | ание      |      |    |  |
|----------|-----------------------------------|-------------|------------------------------|-----------|------|----|--|
|          | Области с константными значениями |             |                              |           |      |    |  |
| 3        | next_useburst                     | b' 0        |                              |           | 0    |    |  |
| 20       | cycle_ctrl                        | b' 100      |                              |           |      |    |  |
|          |                                   |             | <b>«</b>                     | <b>»</b>  |      |    |  |
|          | O6                                | ласти со зн | ачениями, определяемыми поль | зователем |      |    |  |
| 2321     | dst_prot_ctrl                     | ī           | HPROT                        |           |      |    |  |
| 2018     | src_prot_ctrl                     | -           | HPROT                        |           |      |    |  |
|          |                                   |             |                              |           |      |    |  |
| 134      | n_minus_1                         | N*)         |                              | N         | DMA, |    |  |
|          |                                   |             | N 4                          |           |      |    |  |
| *) -     | - R_po                            | ower        | 4,                           |           | N,   | 4. |  |
| ,        | N/4,                              |             | ,                            |           |      |    |  |
|          |                                   |             |                              |           |      |    |  |
|          | 129                               |             |                              |           |      |    |  |
| <b>«</b> | 127                               |             | ».                           |           |      |    |  |

|                 | src_data_end_ptr | dst_data_end_ptr | channel_cfg                                  | Unused     |
|-----------------|------------------|------------------|----------------------------------------------|------------|
| Data for Task A | 0x0A00000        | 0x0AE00000       | cycle_ctrl = b101, 2 <sup>R</sup> = 4, N = 3 | 0xXXXXXXXX |
| Data for Task B | 0x0B000000       | 0x0BE00000       | cycle_ctrl = b101, 2 <sup>R</sup> = 2, N = 8 | 0xXXXXXXXX |
| Data for Task C | 0x0C000000       | 0x0CE00000       | cycle_ctrl = b101, 2 <sup>R</sup> = 8, N = 5 | 0xXXXXXXXX |
| Data for Task D | 0x0D000000       | 0x0DE00000       | cycle_ctrl = b001, 2 <sup>R</sup> = 4, N = 4 | 0xXXXXXXXX |

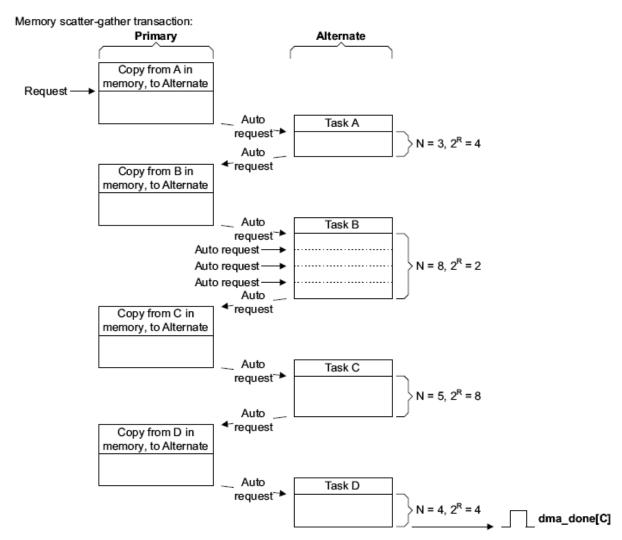



Рисунок 129. Пример работы DMA в режиме с «Исполнением с изменением конфигурации»

#### Пояснения к схеме на рисунке:

| Первичная, копирование А                        |        |            |        |            |      |
|-------------------------------------------------|--------|------------|--------|------------|------|
| DMA.                                            |        |            |        |            | 4    |
| Шаг А                                           |        | ·          | ,      |            |      |
| Первичная, копирование В                        | 4      | DI         | MA.    |            |      |
|                                                 |        |            | ,      | В.         |      |
| ·<br>IIIar B                                    |        | В.         |        |            |      |
| Іервичная, копирование С                        |        |            |        |            |      |
| первичная, копирование С                        | 4      | DI         | MA.    | C.         |      |
|                                                 |        |            | ,      |            |      |
| Шаг С                                           |        | C.         |        |            |      |
| Первичная, копирование D                        |        |            | •      |            |      |
|                                                 | 4      | DI         | MA.    | D          |      |
|                                                 | cycle  | e_ctrl     |        | D.         | b000 |
| , , , , , , , , , , , , , , , , , , ,           |        |            | ,      |            |      |
| Шаг D                                           |        |            | ,      |            |      |
|                                                 | D,     | dma_done   | ∌[C]   | DMA.<br>1  |      |
| hdk                                             |        |            |        |            |      |
| <u>.5.2</u> Режим работы с пер<br>конфигурации» | uqpepu | леи «испол | пнение | с изменени |      |
| DMA,                                            |        |            | _      | ,          | 2    |

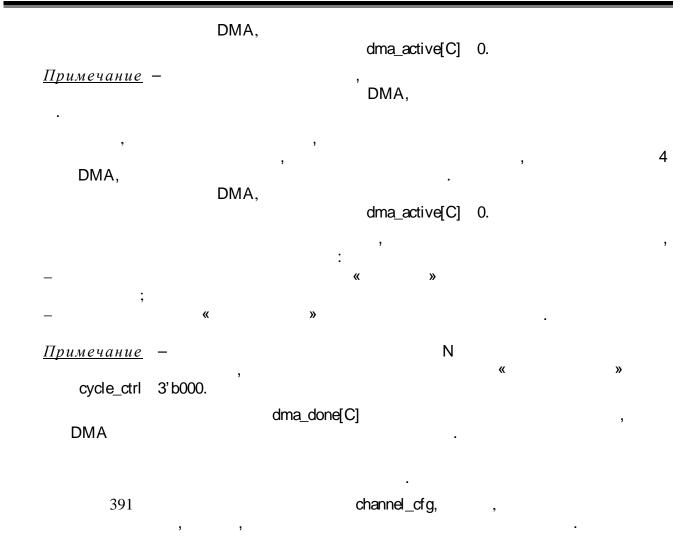



Таблица 391 – Channel\_cfg для первичной структуры управляющих данных в режиме работы с периферией «Исполнение с изменением конфигурации»

| № бита | Обозначение                       | Значение    |                        |         |         | Описа           | ние     |          |      |
|--------|-----------------------------------|-------------|------------------------|---------|---------|-----------------|---------|----------|------|
|        | Области с константными значениями |             |                        |         |         |                 |         |          |      |
| 3130   | dst_inc                           | b' 10       |                        |         |         |                 |         |          |      |
| 2928   | dst_size                          | b' 10       |                        |         |         |                 |         |          |      |
| 2726   | src_inc                           | b' 10       |                        |         |         |                 |         |          |      |
| 2524   | src_size                          | b' 10       |                        |         |         |                 |         |          |      |
| 1714   | R_power                           | b'0010      |                        |         |         | 4               | DMA     |          |      |
| 20     | cycle_ctrl                        | b' 110      |                        |         |         |                 |         |          |      |
|        |                                   |             | <b>«</b>               |         |         |                 |         | <b>»</b> |      |
|        | Of                                | ласти со зі | начения                | ями, оп | ределяе | мыми поль       | вовател | em       |      |
| 2321   | dst_prot_ctrl                     | -           |                        |         |         | HPROT           |         |          |      |
| 2018   | src_prot_ctrl                     | -           |                        |         |         | HPROT           |         |          |      |
|        |                                   |             |                        |         |         |                 |         |          |      |
| 134    | n_minus_1                         | N*)         |                        |         |         |                 |         | N        | DMA, |
|        |                                   |             | N                      | 4       |         |                 |         |          |      |
| 3      | next_useburst                     | _           | 1 chnl_useburst_set[C] |         |         | useburst_set[C] |         |          |      |
|        |                                   |             | 1                      |         |         |                 |         |          |      |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

|                 | src_data_end_ptr | dst_data_end_ptr | channel_cfg                                  | Unused     |
|-----------------|------------------|------------------|----------------------------------------------|------------|
| Data for Task A | 0x0A00000        |                  | cycle_ctrl = b111, 2 <sup>R</sup> = 4, N = 3 |            |
| Data for Task B | 0x0B000000       | 0x0BE00000       | cycle_ctrl = b111, 2 <sup>R</sup> = 2, N = 8 | 0×XXXXXXXX |
| Data for Task C | 0x0C000000       | 0x0CE00000       | cycle_ctrl = b111, 2 <sup>R</sup> = 8, N = 5 | 0xXXXXXXX  |
| Data for Task D | 0x0D000000       | 0x0DE00000       | cycle_ctrl = b001, 2 <sup>R</sup> = 4, N = 4 | 0×XXXXXXXX |

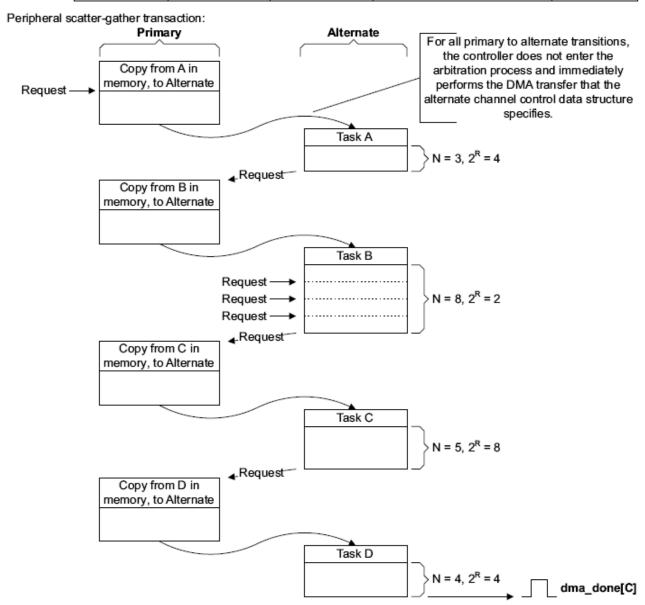
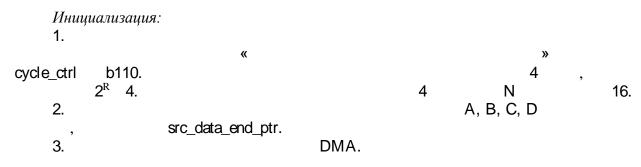




Рисунок 130 – Пример работы DMA в режиме с «Исполнением с изменением конфигурации»

#### Пояснения к схеме на рисунке:



|        | dma_req[].       |                   |         | :         |      |
|--------|------------------|-------------------|---------|-----------|------|
| Первич | ная, копирование | из области А памя | ИТИ     |           |      |
| DMA.   |                  |                   | ,       | •         | 4    |
| Шаг А  |                  |                   |         |           |      |
|        | ,                | В<br>4            | DMA.    | В.        |      |
| Шаг В  |                  | B.<br>3 .         |         |           |      |
|        | ,                | C<br>4            | DMA.    | C.        |      |
| Шаг С  |                  | C.                |         |           |      |
|        |                  |                   | ,       | ,         | ,    |
|        | ,                | D<br>4            | DMA.    | D.        |      |
|        | ,                | cycle_ctrl        |         |           | b000 |
| «      | ».               |                   |         |           |      |
| Шаг D  | hclk             | D,<br>dma_        | done[C] | DMA.<br>1 |      |

#### 29.4.6 Индикация ошибок

# 29.5 Структура управляющих данных канала

| Alternate data str | ucture         | Primary data str | ructure        |          |                   |      |       |
|--------------------|----------------|------------------|----------------|----------|-------------------|------|-------|
| Alternate_Ch_31    | 0250           | Primary_Ch_31    | 0150           |          |                   |      |       |
| Alternate_Ch_30    | 0x3F0          | Primary_Ch_30    | 0x1F0          |          |                   |      |       |
| Alternate_Ch_29    | 0×3E0          | Primary_Ch_29    | 0×1E0          |          |                   |      |       |
| Alternate_Ch_28    | 0x3D0          | Primary_Ch_28    | 0x1D0          |          |                   |      |       |
| Alternate_Ch_27    | 0x3C0          | Primary_Ch_27    | 0x1C0          |          |                   |      |       |
| Alternate_Ch_26    | 0x3B0          | Primary_Ch_26    | 0x1B0          |          |                   |      |       |
| Alternate_Ch_25    | 0x3A0          | Primary_Ch_25    | 0x1A0<br>0x190 |          |                   |      |       |
| Alternate_Ch_24    | 0x390          | Primary_Ch_24    |                |          |                   |      |       |
| Alternate_Ch_23    | 0x380          | Primary_Ch_23    | 0x180          |          |                   |      |       |
| Alternate_Ch_22    | 0x370<br>0x360 | Primary_Ch_22    | 0x170<br>0x160 |          |                   |      |       |
| Alternate_Ch_21    | 0x350          | Primary_Ch_21    | 0x160<br>0x150 |          |                   |      |       |
| Alternate_Ch_20    | 0x340          | Primary_Ch_20    | 0x130          |          |                   |      |       |
| Alternate_Ch_19    | 0x340<br>0x330 | Primary_Ch_19    | 0x140<br>0x130 |          |                   |      |       |
| Alternate_Ch_18    | 0x320          | Primary_Ch_18    | 0x130          |          |                   |      |       |
| Alternate_Ch_17    | 0x320<br>0x310 | Primary_Ch_17    | 0×110          |          |                   |      |       |
| Alternate_Ch_16    | 0×300          | Primary_Ch_16    | 0×100          |          |                   |      |       |
| Alternate_Ch_15    | 0x2F0          | Primary_Ch_15    | 0x0F0          |          |                   |      |       |
| Alternate_Ch_14    | 0x2E0          | Primary_Ch_14    | 0x0E0          |          |                   |      |       |
| Alternate_Ch_13    | 0×2D0          | Primary_Ch_13    | 0×0D0          |          |                   |      |       |
| Alternate_Ch_12    | 0×2C0          | Primary_Ch_12    | 0x0C0          |          |                   |      |       |
| Alternate_Ch_11    | 0x2B0          | Primary_Ch_11    | 0x080          |          |                   |      |       |
| Alternate_Ch_10    | 0×2A0          | Primary_Ch_10    | 0x0A0          |          |                   |      |       |
| Alternate_Ch_9     | 0x290          | Primary_Ch_9     | 0x090          |          |                   |      |       |
| Alternate_Ch_8     | 0x280          | Primary_Ch_8     | 0x080          |          |                   |      |       |
| Alternate_Ch_7     | 0x270          | Primary_Ch_7     | 0x070          |          |                   |      |       |
| Alternate_Ch_6     | 0x260          | Primary_Ch_6     | 0x060          |          |                   |      |       |
| Alternate_Ch_5     | 0x250          | Primary_Ch_5     | 0x050          |          |                   |      |       |
| Alternate_Ch_4     | 0×240          | Primary_Ch_4     | 0x040          | _        |                   |      |       |
| Alternate_Ch_3     | 0x230          | Primary_Ch_3     | 0x030          |          | Unused            |      | 0x00C |
| Alternate_Ch_2     | 0x220          | Primary_Ch_2     | 0x020          | _        | Control           |      | 0x008 |
| Alternate_Ch_1     | 0×210          | Primary_Ch_1     | 0x010          | <b>'</b> | Destination End P |      | 0x004 |
| Alternate_Ch_0     | 0×200          | Primary_Ch_0     | 0x000          |          | Source End Poi    | nter | 0x000 |

Рисунок 131. Карта памяти для 32-х каналов, включая альтернативную структуру

Таблица 392 – Разряды адреса, соответствующие элементам структуры управляющих данных

| Количество каналов,        | Разряды адреса |     |     |     |     |     |       |  |
|----------------------------|----------------|-----|-----|-----|-----|-----|-------|--|
| используемых в контроллере | [9]            | [8] | [7] | [6] | [5] | [4] | [3:0] |  |
| 1                          |                |     |     |     |     | A   |       |  |
| 2                          |                |     |     |     | A   | [0] | 0x0   |  |
| 3-4                        |                |     |     | A   | [1] | [0] | 0x4   |  |
| 5-8                        |                |     | A   | [2] | [1] | [0] | 0.8   |  |
| 9-16                       |                | A   | [3] | [2] | [1] | [0] |       |  |
| 17-32                      | A              | [4] | [3] | [2] | [1] | [0] |       |  |

= 0= 1 DMA. [x:0]Address[3:0] 0 0 0 4 0 8 0 Примечание alt\_ctrl\_base\_ptr 3 132 DMA Destination end pointer -Source end pointer –

Control –

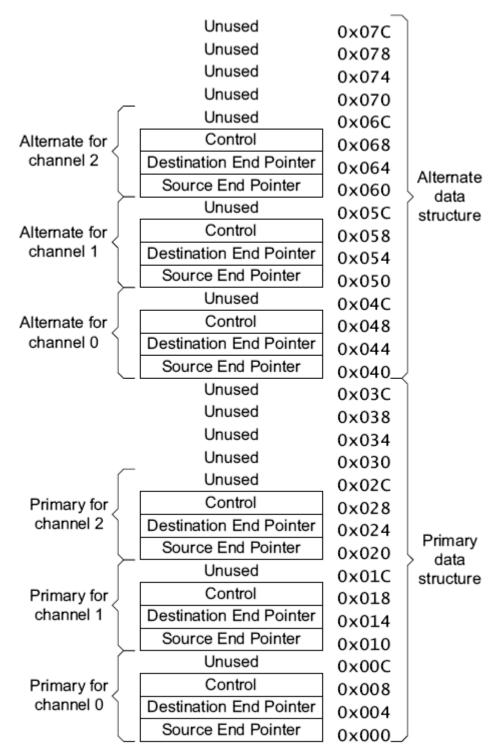



Рисунок 132. Карта памяти для трех каналов DMA, включая альтернативную структуру

0x06 . 0xXXXXXX00,

0xxxxxxx80.

393

DMA,

#### Таблица 393 – Разрешенные базовые адреса

| Количество  | Разрешенные значения базового адреса для первичной структуры |
|-------------|--------------------------------------------------------------|
| каналов DMA | управляющих данных                                           |
| 17-32       | 0xXXXXX000, 0xXXXXX400, 0xXXXXX800, 0xXXXXXC00               |

| _<br>_<br>_<br>_<br>Ук | ;<br>азатель конца данн                       | ;<br>;                                                       | DMA            |                     |
|------------------------|-----------------------------------------------|--------------------------------------------------------------|----------------|---------------------|
|                        |                                               | src_data_end_ptr                                             |                |                     |
|                        |                                               |                                                              |                |                     |
| <b>N</b> C-            | Ф                                             | Таблица 394 – Значен                                         |                |                     |
| <u>№</u><br>бита       | Функциональное имя бита                       | Расшифровка функционального<br>описание назначения и принима |                |                     |
| 310                    | src_data_end_ptr                              | 1                                                            |                |                     |
| -                      | ,<br><u>римечание</u> –<br>азатель конца данн | -                                                            | 2 <sup>R</sup> | DMA.                |
|                        |                                               | dst_data_end_ptr                                             |                |                     |
|                        |                                               | Таблица 395 – Значег                                         | ния разряд     | ов dst data end ptr |
| №                      | Функциональное                                | Расшифровка функционального                                  | имени бит      |                     |
| <b>бита</b> 310        | имя бита                                      | назначения и принимаемых знач                                | ений           |                     |
| 310                    | dst_data_end_ptr                              | DMA                                                          |                |                     |
|                        | ,                                             | DMA,                                                         | 2 <sup>R</sup> | DMA.                |
| $\underline{\Pi} p$    | <u> оимечание</u> —                           |                                                              |                |                     |
| Pa<br>DMA.             | зряды управления                              | channel_cfg                                                  |                |                     |

#### Таблица 396 – Название разрядов области памяти channel\_cfg

| Номер  | 31 | 30      | 29 | 28       | 27 | 26      | 25 | 24      | 2321          | 2018          | 1714    | 134       | 3             | 20         |
|--------|----|---------|----|----------|----|---------|----|---------|---------------|---------------|---------|-----------|---------------|------------|
| Доступ |    |         |    |          |    |         |    |         |               |               |         |           |               |            |
| Сброс  |    |         |    |          |    |         |    |         |               |               |         |           |               |            |
|        |    | dst_inc |    | dst_size |    | src_inc |    | srcsize | dst_prot_crtl | Src_prot_ctrl | R_power | n_minus_1 | next_useburst | cycle_ctrl |

397

#### Таблица 397 – Назначение разрядов channel cfg

|        |                | Таблица 397 – Назначение разрядов channel_cfg                               |
|--------|----------------|-----------------------------------------------------------------------------|
| №      | Функциональное | Расшифровка функционального имени бита, краткое                             |
| бита   | имя бита       | описание назначения и принимаемых значений                                  |
| 31, 30 | dst_inc        |                                                                             |
|        |                | b00 = ;<br>b01 = ;<br>b10 = (32 );<br>b11 = .<br>dst_data_end_ptr.          |
|        |                | b00 = ;<br>b01 = ;<br>b10 = ;<br>b11 = .<br>dst_data_end_ptr.               |
|        |                | = : b00 = ; b01 = ; b10 = (32 ); b11 = . dst_data_end_ptr                   |
| 2928   | dst_size       | <u>Примечание</u> – src_size.                                               |
| 2726   | src_inc        |                                                                             |
|        |                | = :  b00 = ;  b01 = ;  b10 = (32 );  b11 = .  src_data_end_ptr.  = :  b00 = |

| Nº   | Функциональное | Расшифровка функ             |             |                 |      |   |
|------|----------------|------------------------------|-------------|-----------------|------|---|
| бита | имя бита       | описание назначени           | ия и приним | аемых значен    | ий   |   |
|      |                | b01 =<br>b10 =               |             |                 |      |   |
|      |                | b10 =<br>b11 =               |             |                 |      |   |
|      |                | D11 =                        | src_data_   | end ptr         |      |   |
|      |                |                              | =           | :<br>:          |      |   |
|      |                | b00 =                        | ;           |                 |      |   |
|      |                | b01 =                        | ;           |                 |      |   |
|      |                | b10 = ;                      |             |                 |      |   |
|      |                | b11 =                        | oro doto    | and atr         |      |   |
| 2524 | src_size       |                              | src_data_   | <u>eriu_pii</u> |      |   |
| 2024 | 51C_51ZC       | b00 = ;                      |             | •               |      |   |
|      |                | b01 = ,                      | •           | );              |      |   |
|      |                | b10 = (                      | •           | ,               | );   |   |
|      |                | b11 =                        |             |                 |      |   |
| 2321 | dst_prot_ctrl  | <br>                         | IPROT[3:1], |                 |      |   |
|      |                | 23                           |             | HPROT[3]:       |      |   |
|      |                | 0 = HPROT[3]                 | 0           |                 | :    |   |
|      |                | 1 = HPROT[3]                 | 1           |                 |      |   |
|      |                | 22                           |             | HPROT[2]:       |      |   |
|      |                | 0 = HPROT[2]                 | 0           |                 | ;    |   |
|      |                | 1 = HPROT[2]<br>21           | 1           | LIDDOT[4].      | •    |   |
|      |                | 0 = HPROT[1]                 | 0           | HPROT[1]:       |      |   |
|      |                | 1 = HPROT[1]                 | 1           |                 |      | , |
| 2018 | src_prot_ctrl  |                              | HPROT[3:1], |                 |      |   |
|      |                | 20                           | •           | UDD∩T[3].       |      |   |
|      |                | 0 = HPROT[3]                 | 0           | HPROT[3]:       |      |   |
|      |                | 1 = HPROT[3]                 | 1           |                 | ,    |   |
|      |                | 19                           |             | HPROT[2]:       |      |   |
|      |                | 0 = HPROT[2]                 | 0           |                 | ;    |   |
|      |                | 1 = HPROT[2]                 | 1           | LIDDOTIAL       | •    |   |
|      |                | 18<br>0 - HDDOT(1)           | 0           | HPROT[1]:       |      |   |
|      |                | 0 = HPROT[1]<br>1 = HPROT[1] | 1           |                 |      | , |
| 1714 | R_power        | 1 - 1 11 10 1[1]             | <br>DMA     |                 |      |   |
|      | <b>-1</b>      |                              |             |                 |      |   |
|      |                | 1,000                        | :           |                 |      |   |
|      |                | b0000 -                      |             |                 |      |   |
|      |                | DMA;<br>b0001 -              |             | 2               | DMA; |   |
|      |                | b0001 -<br>b0010 -           |             | 4               | DMA; |   |
|      |                | b0011 -                      |             | 8               | DMA; |   |
|      |                | b0100 -                      |             | 16              | DMA; |   |
|      |                | b0101 -                      |             | 32              | DMA; |   |
|      |                | b0110 -                      |             | 64<br>129       | DMA; |   |
|      |                | b0111 -                      |             | 128             | DMA; |   |

| №    | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
|      |                | b1000 - 256 DMA;                                |
|      |                | b1001 - 512 DMA;                                |
|      |                | b1010 - b1111 1024                              |
|      |                | DMΔ                                             |
|      |                | DMA                                             |
|      |                | 1024                                            |
| 134  | n_minus_1      | DMA                                             |
|      |                | DMA, DMA.                                       |
|      |                | ,                                               |
|      |                | DMA.                                            |
|      |                | 10- DMA.                                        |
|      |                | :                                               |
|      |                | b000000000 = 1 DMA;                             |
|      |                | b000000001 = 2 DMA;                             |
|      |                | b000000010 = 3 DMA;                             |
|      |                | b000000011 = 4 DMA;                             |
|      |                | b0000000100 = 5 DMA;                            |
|      |                | b0000000101 = 6 DMA;                            |
|      |                | DIVIA,                                          |
|      |                | b111111111 = 1024 DMA.                          |
|      |                | DITITITITE 1024                                 |
|      |                | ,                                               |
|      |                | DMA DMA                                         |
| 3    | next_useburst  | chal usahuret sat[C]                            |
| 3    | next_useourst  | 1,                                              |
|      |                |                                                 |
|      |                | «                                               |
|      |                | DIVITY,                                         |
|      |                | Примечание – DMA,                               |
|      |                | $\frac{11pumequnue}{}$                          |
|      |                | chnl_useburst_set[C] 0,                         |
|      |                | $DM\Lambda$                                     |
|      |                | next_useburst , 2 .                             |
|      |                | , incat_docodist                                |
|      |                | chnl_useburst_set[C].                           |
|      |                | DMA                                             |
|      |                |                                                 |
|      |                | «                                               |
|      |                | ,                                               |
|      |                | next_useburst:                                  |
|      |                | 0 - chnl_useburst_set[C].                       |
|      |                | chnl_useburst_set[C] 0,                         |
|      |                | DMA                                             |
|      |                | « »,                                            |
|      |                |                                                 |
|      |                | DMA                                             |
|      |                | DIVIA                                           |
|      |                | 1 — chnl_useburst_set[C]                        |
|      |                | 1. DMA                                          |

| №<br>бита | Функциональное имя бита |                      | ровка функциональ<br>ие назначения и при | нимаемых значе   |                     |
|-----------|-------------------------|----------------------|------------------------------------------|------------------|---------------------|
|           |                         |                      | »,<br>dma_req[],                         | «<br>[           | DMA                 |
| 20        | cycle_ctrl              | b000<br>b001<br>b010 | Стоп. , « Основной. Авто-запрос.         | DMA: »; DMA,     | ;                   |
|           |                         | b011                 | Пинг-понг.                               | ,                | DMA;<br>DMA<br>DMA, |
|           |                         |                      |                                          | DMA,             |                     |
|           |                         | b100                 | DMA, , , , , , , , , , , , , , , , , , , | cycle_ctrl<br>«  |                     |
|           |                         | b101                 | ».                                       | b100;<br>«       |                     |
|           |                         | b110                 |                                          | «<br>».          | b101;               |
|           |                         | b111                 |                                          | b110;<br>«<br>». |                     |
|           |                         |                      |                                          |                  | b111                |

```
DMA
                                   DMA
                                                                 channel cfg
                                2R N
channel_cfg
                                    dst_size,
                                                               src size.
                                                                  src_size
n_minus_1,
                                      dst_size, src_size.
                               Ν
cycle_ctrl
                              channel_cfg
          b000,
                                                            ».
                                  DMA.
    Вычисление адреса
                                        DMA,
       n_minus_1
                                                      src inc,
                                        DMA,
       n_minus_1
                                                      dst_inc,
                                src_inc
                                        dst_inc
       src inc=b00 and dst inc=b00
     - адрес источника = src data end ptr - n minus 1
     - адрес приемника = dst data end ptr - n minus 1.
       src inc=b01 and dst inc=b01
     - адрес источника = src data end ptr - (n minus 1<<1)
     - адрес приемника = dst data end ptr - (n minus 1<<1).
       src inc=b01 and dst inc=b10
     - адрес источника = src data end ptr - (n minus 1<<2)
     - адрес приемника = dst data end ptr - (n minus 1<<2).
       src inc=b11 and dst inc=b11
     - - адрес источника = src data end ptr
     - - адрес приемника = dst data end ptr.
```

398 DMA 6

Таблица 398 – Цикла DMA для 6 слов с пословным инкрементом

|              | Начальные значения channel_cfg перед циклом DMA         |                     |                     |       |  |  |  |  |  |
|--------------|---------------------------------------------------------|---------------------|---------------------|-------|--|--|--|--|--|
|              | src_size=b10, dst_inc=b10, n_minus_1=b101, cycle_ctrl=1 |                     |                     |       |  |  |  |  |  |
|              | Указатель конца                                         | Счетчик             | Отличие*)           | Адрес |  |  |  |  |  |
| DMA передачи | данных                                                  |                     |                     |       |  |  |  |  |  |
|              | 0x2AC                                                   | 5                   | 0 14                | 0 298 |  |  |  |  |  |
|              | 0x2AC                                                   | 4                   | 0 10                | 0 29  |  |  |  |  |  |
|              | 0x2AC                                                   | 3                   | 0                   | 0 2A0 |  |  |  |  |  |
|              | 0x2AC                                                   | 2                   | 0 8                 | 0 2A4 |  |  |  |  |  |
|              | 0x2AC                                                   | 1                   | 0 4                 | 0 2A8 |  |  |  |  |  |
|              | 0x2AC                                                   | 0                   | 0 0                 | 0 2A  |  |  |  |  |  |
|              | Конечные значения channel cfg после цикла DMA           |                     |                     |       |  |  |  |  |  |
|              | src_size=b10, d                                         | lst_inc=b10, n_minu | s_1=0, cycle_ctrl=0 |       |  |  |  |  |  |

dst\_inc.

**»** 

**«** 

399 DMA 12

Таблица 399 – Цикла DMA для 12 байт с «полусловным» инкрементом

| гаолица 399 – цикла DMA для 12 байт с «полусловным» инкрементом       |                                                 |                     |                           |             |  |  |  |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------|---------------------|---------------------------|-------------|--|--|--|--|--|--|
|                                                                       | Hачальные значения channel_cfg перед циклом DMA |                     |                           |             |  |  |  |  |  |  |
| src_size=b00, dst_inc=b01, n_minus_1=b1011, cycle_ctrl=1, R_power=b11 |                                                 |                     |                           |             |  |  |  |  |  |  |
|                                                                       | Указатель                                       | Счетчик             | Отличие*)                 | Адрес       |  |  |  |  |  |  |
| DMA                                                                   | конца данных                                    |                     |                           |             |  |  |  |  |  |  |
| передачи                                                              | 0x5 7                                           | 11                  | 0 16                      | 0 5D1       |  |  |  |  |  |  |
|                                                                       | 0x5 7                                           | 10                  | 0 14                      | 0 5D3       |  |  |  |  |  |  |
|                                                                       | 0x5 7                                           | 9                   | 0 12                      | 0 5D5       |  |  |  |  |  |  |
|                                                                       | 0x5 7                                           | 8                   | 0 10                      | 0 5D7       |  |  |  |  |  |  |
|                                                                       | 0x5 7                                           | 7                   | 0 E                       | 0 5D9       |  |  |  |  |  |  |
|                                                                       | 0x5 7                                           | 6                   | 0 C                       | 0 5DB       |  |  |  |  |  |  |
|                                                                       | 0x5 7                                           | 5                   | 0 A                       | 0 5DD       |  |  |  |  |  |  |
|                                                                       | 0x5 7                                           | 4                   | 0 8                       | 0 5DF       |  |  |  |  |  |  |
|                                                                       | Значения с                                      | channel_cfg после 2 | <sup>2R</sup> передач DMA |             |  |  |  |  |  |  |
| S                                                                     | rc_size=b00, dst_inc                            | =b01, n_minus_1=b   | 011, cycle_ctrl=1, R      | R_power=b11 |  |  |  |  |  |  |
|                                                                       | 0x5 7                                           | 3                   | 0 6                       | 0 5E1       |  |  |  |  |  |  |
| DMA                                                                   | 0x5 7                                           | 2                   | 0 4                       | 0 5E3       |  |  |  |  |  |  |
| передачи                                                              | 0x5 7                                           | 1                   | 0 2                       | 0 5E5       |  |  |  |  |  |  |
|                                                                       | 0x5 7                                           | 0                   | 0 0                       | 0 5E7       |  |  |  |  |  |  |
| Конечные значения channel_cfg после цикла DMA                         |                                                 |                     |                           |             |  |  |  |  |  |  |
|                                                                       | src_size=b00, dst_in                            | c=b01, n_minus_1=   | 0, cycle_ctrl=0**), R     | _power=b11  |  |  |  |  |  |  |

dst\_inc.

DMA

channel\_cfg «

cycle\_ctrl.

0

»,

#### 29.6 Описание регистров контроллера DMA

- ; - : - : - , ;

, ; - 0, ;

Таблица 400 – Перечень регистров контроллера

| Смещение отн. базового адреса | Наименование      | Тип | Значение по сбросу | Описание                       |
|-------------------------------|-------------------|-----|--------------------|--------------------------------|
| 0x40028000                    | MDR_DMA           |     | 1 3                | DMA                            |
| 0x000                         | STATUS            | RO  | 0x-0nn0000*)       | MDR_DMA->STATUS DMA            |
| 0x004                         | CFG               | WO  | -                  | MDR_DMA->CFG DMA               |
| 0x008                         | CTRL_BASE_PTR     | R/W | 0x00000000         | MDR_DMA->CTRL_BASE_PTR         |
| 0x00C                         | ALT_CTRL_BASE_PTR | RO  | 0x000000nn**)      | MDR_DMA-<br>>ALT_CTRL_BASE_PTR |
| 0x010                         | WAITONREQ_STATUS  | RO  | 0x00000000         | MDR_DMA->WAITONREQ_STATUS      |
| 0x014                         | CHNL_SW_REQUEST   | WO  | -                  | MDR_DMA->CHNL_SW_REQUEST       |
| 0x018                         | CHNL_USEBURST_SET | R/W | 0x00000000         | MDR_DMA->CHNL_USEBURST_SET     |
| 0x01C                         | CHNL_USEBURST_CLR | WO  | -                  | MDR_DMA->CHNL_USEBURST_CLR     |
| 0x020                         | CHNL_REQ_MASK_SET | R/W | 0x00000000         | MDR_DMA->CHNL_REQ_MASK_SET     |

## Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| 0x024       | CHNL_REQ_MASK_CLR | WO  | _          | MDR_DMA->CHNL_REQ_MASK_CLR |
|-------------|-------------------|-----|------------|----------------------------|
| 0x028       | CHNL_ENABLE_SET   | R/W | 0x00000000 | MDR_DMA->CHNL_ENABLE_SET   |
| 0x02C       | CHNL_ENABLE_CLR   | WO  | -          | MDR_DMA->CHNL_ENABLE_CLR   |
|             |                   |     |            | MDR_DMA->CHNL_PRI_ALT_SET  |
| 0x030       | CHNL_PRI_ALT_SET  | R/W | 0x00000000 | /                          |
|             |                   |     |            | MDR_DMA->CHNL_PRI_ALT_CLR  |
| 0x034       | CHNL_PRI_ALT_CLR  | WO  | -          | /                          |
| 0x038       | CHNL_PRIORITY_SET | R/W | 0x00000000 | MDR_DMA->CHNL_PRIORITY_SET |
| 0x03C       | CHNL_PRIORITY_CLR | WO  | -          | MDR_DMA->CHNL_PRIORITY_CLR |
| 0x040-0x048 | -                 |     | _          |                            |
| 0x04C       |                   | R/W |            |                            |
|             | ERR_CLR           |     | 0x00000000 | MDR_DMA->ERR_CLR           |
| 0x050-0xDFC | -                 | -   |            |                            |

\* - DMA,

\*\* - DMA,

#### 29.6.1 MDR\_DMA->STATUS

DMA

. 402 .

#### Таблица 401 – Статусный регистр DMA

| Номер  | 3128        | 2721 | 2016         | 158 | 74    | 31 | 0             |
|--------|-------------|------|--------------|-----|-------|----|---------------|
| Доступ | RO          | U    | RO           | U   | RO    | U  | RO            |
| Сброс  | 0           | 0    | 0            | 0   | 0     | 0  | 0             |
|        | test_status | •    | chnls_minus1 | •   | State | •  | master_enable |

Таблица 402 – Назначение разрядов регистра dma\_status

| No   |               |                         |          | о имени бита, краткое опис | ание |
|------|---------------|-------------------------|----------|----------------------------|------|
| бита | имя бита      | назначения и принимае   | мых знач | чений                      |      |
| 3128 | test_status   | :                       |          |                            |      |
|      |               | 0 0 =                   |          |                            | ;    |
|      |               | 0 1 =                   |          |                            | ;    |
|      |               | 0 2-0 F=                |          |                            |      |
| 2721 | -             |                         |          |                            |      |
| 2016 | chnls_minus1  |                         | DI       | MA 1.                      |      |
|      |               | :                       |          |                            |      |
|      |               | b00000 =                | 1        | DMA;                       |      |
|      |               | b00001 =                | 2        | DMA;                       |      |
|      |               | b00010 =                | 3        | DMA;                       |      |
|      |               | •••                     |          |                            |      |
|      |               | b11111 =                | 32       | DMA                        |      |
| 158  | -             |                         |          |                            |      |
| 74   | state         |                         |          | •                          |      |
|      |               |                         |          | :                          |      |
|      |               | b0000 = ;               |          |                            |      |
|      |               | b0001 =                 |          | <b>;</b>                   |      |
|      |               | b0010 =                 |          | ;                          |      |
|      |               | b0011 =                 |          | <b>;</b>                   |      |
|      |               | b0100 =                 |          | ;                          |      |
|      |               | b0101 =                 |          | ;                          |      |
|      |               | b0110 =                 |          | DMA;                       |      |
|      |               | b0111 =                 | _        | ;                          |      |
|      |               | b1000 = b1001 = ;       | ,        |                            |      |
|      |               | b1001 = ;<br>b1010 =    |          | <b>«</b>                   |      |
|      |               | D1010 =                 |          |                            |      |
|      |               | b1011-b1111 =           |          | <b>»</b> ;                 |      |
| 31   | _             | 01011- <b>0</b> 11111 = |          |                            |      |
| 0    | master_enable | <u> </u>                |          |                            |      |
| U    | masici_enable | 0 =                     |          |                            |      |
|      |               | 0 =<br>1 =              |          | ,                          |      |
|      |               | 1 =                     |          |                            |      |

#### 29.6.2 MDR\_DMA->CFG

DMA

404

Таблица 403 – Регистр конфигурации DMA

| I      | -   | chnl_prot_ctrl | -  | master_enable |
|--------|-----|----------------|----|---------------|
| Сброс  | 0   | 0              | 0  | 0             |
| Доступ | U   | WO             | U  | WO            |
| Номер  | 318 | 75             | 41 | 0             |

Таблица 404 – Назначение разрядов регистра dma\_cfg

| No   | Функциональное | Расшифровка функцио                        | Расшифровка функционального имени бита, краткое |         |  |  |
|------|----------------|--------------------------------------------|-------------------------------------------------|---------|--|--|
| бита | имя бита       | описание назначения и принимаемых значений |                                                 |         |  |  |
| 318  | -              | ,                                          | 0.                                              |         |  |  |
| 75   | chnl_prot_ctrl |                                            | HPRC                                            | )T[3:1] |  |  |
|      |                | AHB-Lite:                                  |                                                 |         |  |  |
|      |                | 7                                          | HPROT[3],                                       |         |  |  |
|      |                |                                            | ;                                               |         |  |  |
|      |                | 6                                          | HPROT[2],                                       |         |  |  |
|      |                | _                                          | ;                                               |         |  |  |
|      |                | 5                                          | HPROT[1],                                       |         |  |  |
|      |                |                                            |                                                 |         |  |  |
|      |                | <u>Примечания:</u>                         |                                                 | LIDDOT  |  |  |
|      |                | [n] = 1,                                   |                                                 | HPROT   |  |  |
|      |                |                                            | 1;                                              | LIDDOT  |  |  |
|      |                | [n] = 0,                                   | 0                                               | HPROT   |  |  |
| 4 1  |                |                                            |                                                 |         |  |  |
| 41   |                | •                                          | 0.                                              |         |  |  |
| 0    | master_enable  |                                            | :                                               |         |  |  |
|      |                | 0 -                                        | •                                               |         |  |  |
|      |                | 1 –                                        |                                                 |         |  |  |

#### 29.6.3 MDR\_DMA->CTRL\_BASE\_PTR

Примечание -

DMA,

· ,

406 ctrl\_base\_ptr.

#### Таблица 405 – Регистр базового адреса управляющих данных каналов

| Номер  | 3110          | 90 |
|--------|---------------|----|
| Доступ | R/W           | U  |
| Сброс  | 0             | 0  |
|        | ctrl_base_ptr | -  |

#### Таблица 406 – Назначение разрядов регистра ctrl\_base\_ptr

| №<br>бита | Функциональное<br>имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |  |  |
|-----------|----------------------------|--------------------------------------------------------------------------------------------|--|--|
| 3110      | ctrl_base_ptr              |                                                                                            |  |  |
|           |                            |                                                                                            |  |  |
| 90        | -                          | . 0                                                                                        |  |  |

#### 29.6.4 MDR\_DMA->ALT\_CTRL\_BASE\_PTR

408

Таблица 407 – Регистр базового адреса альтернативных управляющих данных каналов

| Номер  | 31 0              |
|--------|-------------------|
| Доступ | RO                |
| Сброс  | 0                 |
|        | Alt_ctrl_base_ptr |

#### Таблица 408 – Назначение разрядов регистра alt ctrl base ptr

| <b>№</b><br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |
|------------------|-------------------------|--------------------------------------------------------------------------------------------|
| 310              | alt_ctrl_base_ptr       |                                                                                            |

#### 29.6.5 MDR\_DMA->WAITONREQ\_STATUS

dma\_waitonreq[].

410

Таблица 409 – Регистр статуса ожидания запроса на обработку каналов

|        |                                               | · • • • • • • • • • • • • • • • • • • • | · •                                          |                                              | •                                            |
|--------|-----------------------------------------------|-----------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| Номер  | 31                                            | •••••                                   | 2                                            | 1                                            | 0                                            |
| Номер  | RO                                            | •••••                                   | RO                                           | RO                                           | RO                                           |
| Доступ | 0                                             | •••••                                   | 0                                            | 0                                            | 0                                            |
|        | dma_waitonreg_status<br>for dma_waitnreg [31] | •••••                                   | dma_waitonreg_status<br>for dma_waitnreg [2] | dma_waitonreg_status<br>for dma_waitnreg [1] | dma_waitonreg_status<br>for dma_waitnreg [0] |

#### Таблица 410 – Назначение разрядов регистра dma\_waitonreq\_status

| №    | Функциональное       | Расшифровка функционального имени бита, краткое |   |                  |   |  |
|------|----------------------|-------------------------------------------------|---|------------------|---|--|
| бита | имя бита             | описание назначения и принимаемых значений      |   |                  |   |  |
| 310  | dma_waitonreq_status |                                                 |   |                  |   |  |
|      |                      | DMA.                                            |   |                  |   |  |
|      |                      | При чтении:                                     |   |                  |   |  |
|      |                      | [C] =0                                          | , | dma_waitonreq[C] | 0 |  |
|      |                      | [C] =1                                          | , | dma_waitonreq[C] | 1 |  |

#### 29.6.6 MDR\_DMA->CHNL\_SW\_REQUEST

DMA.

412

#### Таблица 411 – Регистр программного запроса на обработку каналов

|        |                                     | , <u> </u> | 1                                  |                                    |                                    |
|--------|-------------------------------------|------------|------------------------------------|------------------------------------|------------------------------------|
| Номер  | 31                                  | •••••      | 2                                  | 1                                  | 0                                  |
| Доступ | WO                                  | •••••      | WO                                 | WO                                 | WO                                 |
| Сброс  | 0                                   | •••••      | 0                                  | 0                                  | 0                                  |
|        | chnl_sw_request<br>for channel [31] | •••••      | chnl_sw_request<br>for channel [2] | chnl_sw_request<br>for channel [1] | chnl_sw_request<br>for channel [0] |

#### Таблица 412 – Назначение разрядов регистра chnl sw request

| №    | Функциональное  | Расшифровка фун        | кционального имен | и бита, краткое | описание |
|------|-----------------|------------------------|-------------------|-----------------|----------|
| бита | имя бита        | назначения и прин      | нимаемых значений |                 |          |
| 310  | chnl_sw_request | _                      | DMA.              |                 | DMA      |
|      |                 | При записи:<br>[C] = 0 | ,                 |                 | DMA      |
|      |                 | [C] = 1                | ,                 |                 | DMA      |
|      |                 | ,                      |                   | DMA             | ,        |

#### 29.6.7 MDR\_DMA->CHNL\_USEBURST\_SET

dma\_sreq[]

dma\_req[].

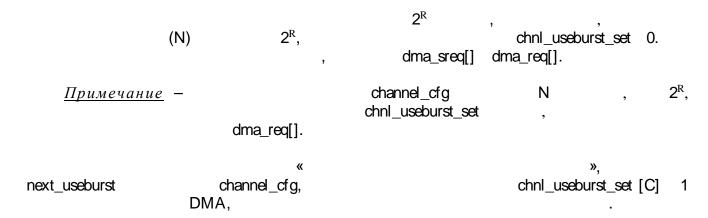

414 .

Таблица 413 – Регистр установки пакетного обмена каналов

|        |                                       | 1 0   |                                      |                                      |                                      |
|--------|---------------------------------------|-------|--------------------------------------|--------------------------------------|--------------------------------------|
| Номер  | 31                                    | ••••• | 2                                    | 1                                    | 0                                    |
| Доступ | R/W                                   | ••••• | R/W                                  | R/W                                  | R/W                                  |
| Сброс  | 0                                     | ••••• | 0                                    | 0                                    | 0                                    |
|        | chnl_useburst_set<br>for channel [31] | ••••• | chnl_useburst_set<br>for channel [2] | chnl_useburst_set<br>for channel [1] | chnl_useburst_set<br>for channel [0] |

Таблица 414 – Назначение разрядов регистра chnl useburst\_set

| No   | Функциональное    | Расшифровка функционального имени бита, краткое описание |            |                       |                       |
|------|-------------------|----------------------------------------------------------|------------|-----------------------|-----------------------|
| бита | имя бита          | назначения и при                                         | нимаемь    | іх значений           |                       |
| 310  | chnl_useburst_set |                                                          |            |                       | DMA                   |
|      |                   | dma_sreq[]                                               |            |                       |                       |
|      |                   | При чтении:                                              |            |                       |                       |
|      |                   | [C] = 0                                                  |            | DMA                   | DMA                   |
|      |                   | [ - ]                                                    | ,          |                       | dma_sreq[]            |
|      |                   | dma                                                      | _req[].    | ,                     | 3.110 <u>-</u> 3.54[] |
|      |                   | uma_                                                     | _104[].    |                       | <b>2</b> <sup>R</sup> |
|      |                   |                                                          |            |                       | _                     |
|      |                   | [C] = 1                                                  | •          | DMA                   | DMA                   |
|      |                   | [0] = 1                                                  | ,          | DIVIA                 | dma_req[].            |
|      |                   |                                                          |            | ,<br>2 <sup>R</sup>   | una_req[].            |
|      |                   | При записи:                                              |            | 2                     | •                     |
|      |                   | [C] = 0                                                  |            |                       |                       |
|      |                   |                                                          | uooburot   | ,<br>ole              |                       |
|      |                   | Cririi_                                                  | _useburst_ |                       |                       |
|      |                   | [0]                                                      |            | 0;                    |                       |
|      |                   | [C] = 1                                                  |            | 5144                  |                       |
|      |                   |                                                          |            | DMA,                  | dma_sreq[].           |
|      |                   |                                                          |            | <b>2</b> <sup>R</sup> |                       |
|      |                   | ,                                                        |            |                       | ,                     |
|      |                   |                                                          |            |                       |                       |



#### 29.6.8 MDR\_DMA->CHNL\_USEBURST\_CLR

dma\_sreq[]. 416 chnl\_useburst\_clr.

Таблица 415 – Регистр сброса пакетного обмена каналов

|        |                                       | ' 1 1 |                                      |                                      |                                      |
|--------|---------------------------------------|-------|--------------------------------------|--------------------------------------|--------------------------------------|
| Номер  | 31                                    | ••••• | 2                                    | 1                                    | 0                                    |
| Доступ | WO                                    | ••••• | WO                                   | WO                                   | WO                                   |
| Сброс  | 0                                     | ••••• | 0                                    | 0                                    | 0                                    |
|        | chnl_useburst_clr<br>for channel [31] | ••••• | chnl_useburst_clr<br>for channel [2] | chnl_useburst_clr<br>for channel [1] | chnl_useburst_clr<br>for channel [0] |

Таблица 416 – Назначение разрядов регистра chnl useburst clr

| No   | Функциональное    | Расшифровка функционального имени бита, краткое описание |  |  |  |
|------|-------------------|----------------------------------------------------------|--|--|--|
| бита | имя бита          | назначения и принимаемых значений                        |  |  |  |
| 310  | chnl_useburst_clr | DMA dma_sreq[].                                          |  |  |  |
|      |                   | При записи:                                              |  |  |  |
|      |                   | [C] = 0 		 .                                             |  |  |  |
|      |                   | chnl_useburst_set                                        |  |  |  |
|      |                   | dma_sreq[];                                              |  |  |  |
|      |                   | [C] = 1                                                  |  |  |  |
|      |                   | DMA,                                                     |  |  |  |
|      |                   | dma_sreq[].                                              |  |  |  |
|      |                   | ,                                                        |  |  |  |
|      |                   |                                                          |  |  |  |

#### 29.6.9 MDR\_DMA->CHNL\_REQ\_MASK\_SET

418

DMA dma\_sreq[] dma\_req[].

dma\_sreq[] dma\_req[]

chnl\_req\_mask\_set.

Таблица 417 – Регистр маскирования запросов на обслуживание каналов

|        |                                                            | · · · · · · | r                                                        |                                                          |                                                          |
|--------|------------------------------------------------------------|-------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Номер  | 31                                                         | •••••       | 2                                                        | 1                                                        | 0                                                        |
| Доступ | R/W                                                        | •••••       | R/W                                                      | R/W                                                      | R/W                                                      |
| Сброс  | 0                                                          | •••••       | 0                                                        | 0                                                        | 0                                                        |
|        | chnl_reg_mask_set<br>for dma_reg [31]<br>and dma_sreg [31] | •••••       | chnl_reg_mask_set<br>for dma_reg [2]<br>and dma_sreg [2] | chnl_reg_mask_set<br>for dma_reg [1]<br>and dma_sreg [1] | chnl_reg_mask_set<br>for dma_reg [0]<br>and dma_sreg [0] |

Таблица 418 – Назначение разрядов регистра chnl req mask set

| №    | Функциональное    | Расшифровка функционального имени бита, краткое описание |  |  |  |
|------|-------------------|----------------------------------------------------------|--|--|--|
| бита | имя бита          | назначения и принимаемых значений                        |  |  |  |
| 310  | chnl_req_mask_set | dma_sreq[] dma_req[]<br>DMA                              |  |  |  |
|      |                   | . При чтении:  [C] = 0 , DMA                             |  |  |  |
|      |                   | ,                                                        |  |  |  |

#### 29.6.10 MDR\_DMA->CHNL\_REQ\_MASK\_CLR

DMA dma\_sreq[] dma\_req[].

chnl\_req\_mask\_clr.

#### Таблица 419 – Регистр очистки маскирования запросов на обслуживание каналов

|        |                                                            |       | pozumini sumpot                                          | 02 11 <b>11</b> 00 <b>01</b> 1 1 1 1 1 1 1 1             |                                                          |
|--------|------------------------------------------------------------|-------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Номер  | 31                                                         | ••••• | 2                                                        | 1                                                        | 0                                                        |
| Доступ | WO                                                         | ••••• | WO                                                       | WO                                                       | WO                                                       |
| Сброс  | 0                                                          | ••••• | 0                                                        | 0                                                        | 0                                                        |
|        | chnl_reg_mask_clr<br>for dma_reg [31]<br>and dma_sreg [31] | ••••• | chnl_reg_mask_clr<br>for dma_reg [2]<br>and dma_sreg [2] | chnl_reg_mask_clr<br>for dma_reg [1]<br>and dma_sreg [1] | chnl_reg_mask_clr<br>for dma_reg [0]<br>and dma_sreg [0] |

#### Таблица 420 – Назначение разрядов регистра chnl\_req\_mask\_clr

| Nº   | Функциональное    | Расшифровка функционального имени бита, краткое описание |
|------|-------------------|----------------------------------------------------------|
| бита | имя бита          | назначения и принимаемых значений                        |
| 310  | chnl_req_mask_clr | dma srea[] dma rea[] DMA                                 |
|      |                   | dma_sreq[] dma_req[] DMA .                               |
|      |                   | При записи:                                              |
|      |                   | [C] =0 .                                                 |
|      |                   | chnl_req_mask_set                                        |
|      |                   | ;<br>[C] =1                                              |
|      |                   | DMA, dma_sreq[] dma_req[].                               |
|      |                   | ,                                                        |

#### 29.6.11 MDR\_DMA->CHNL\_ENABLE\_SET

DMA.

422 chnl\_enable\_set.

#### Таблица 421 – Регистр установки разрешения каналов

|        |                                     | 1 0   | 1                                  | 1                                  |                                    |
|--------|-------------------------------------|-------|------------------------------------|------------------------------------|------------------------------------|
| Номер  | 31                                  | ••••• | 2                                  | 1                                  | 0                                  |
| Доступ | WO                                  | ••••• | WO                                 | WO                                 | WO                                 |
| Сброс  | 0                                   | ••••• | 0                                  | 0                                  | 0                                  |
|        | chnl_enable_set<br>for channel [31] | ••••• | chnl_enable_set<br>for channel [2] | chnl_enable_set<br>for channel [1] | chnl_enable_set<br>for channel [0] |

#### Таблица 422 – Назначение разрядов регистра chnl enable set

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений                                  |     |  |  |  |
|-----------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| 310       | chnl_enable_set         | DMA                                                                                                                         | DMA |  |  |  |
|           |                         | При чтении:       [C] = 0       , DMA       ;         [C] = 1       , DMA       ;         При записи:       [C] = 0       . |     |  |  |  |
|           |                         | chnl_enable_clr [C] = 1 DMA .                                                                                               | ;   |  |  |  |

#### 29.6.12 MDR\_DMA->CHNL\_ENABLE\_CLR

. DMA.

424 chnl\_enable\_clr.

#### Таблица 423 – Регистр сброса разрешения каналов

| Номер  | 31                                | ••••• | 2                                | 1                                | 0                                |
|--------|-----------------------------------|-------|----------------------------------|----------------------------------|----------------------------------|
| Доступ | WO                                | ••••• | WO                               | WO                               | WO                               |
| Сброс  | 0                                 | ••••• | 0                                | 0                                | 0                                |
|        | chnl_enable_clr<br>for channel 31 | ••••• | chnl_enable_clr<br>for channel 2 | chnl_enable_clr<br>for channel 1 | chnl_enable_clr<br>for channel 0 |

#### Таблица 424 – Назначение разрядов регистра chnl enable clr

| №    | Функциональное  | Расшифровка фун     | кционального і | имени бита, краткое описан | ие   |
|------|-----------------|---------------------|----------------|----------------------------|------|
| бита | имя бита        | назначения и прин   | нимаемых значе | ений                       |      |
| 310  | chnl_enable_clr |                     |                |                            |      |
|      |                 |                     | DMA.           |                            |      |
|      |                 | При записи:         |                |                            |      |
|      |                 | [C] = 0             |                |                            |      |
|      |                 | chi                 | nl_enable_set  |                            |      |
|      |                 | [0] 4               | ,              | DAAA                       |      |
|      |                 | [C] = 1             |                | DMA .                      |      |
|      |                 | ,                   |                | ,                          |      |
|      |                 | <u>Примечание</u> – |                |                            | DMA, |
|      |                 | -                   | DMA;           | •                          |      |
|      |                 | -                   | channel_cfg    | cycle_ctrl                 |      |
|      |                 | b000;               | _              |                            |      |
|      |                 | -                   |                | AHB-Lite                   |      |

# 29.6.13 MDR\_DMA->CHNL\_PRI\_ALT\_SET **DMA** DMA ( DMA). 426

Таблица 425 – Регистр установки первичной/альтернативной структуры управляющих данных каналов

chnl\_pri\_alt\_set.

|        |                                      | J P   | , , ,                               |                                     |                                     |
|--------|--------------------------------------|-------|-------------------------------------|-------------------------------------|-------------------------------------|
| Номер  | 31                                   | ••••• | 2                                   | 1                                   | 0                                   |
| Доступ | R/W                                  | ••••• | R/W                                 | R/W                                 | R/W                                 |
| Сброс  | 0                                    | ••••• | 0                                   | 0                                   | 0                                   |
|        | chnl_pri_alt_set<br>for channel [31] | ••••• | chnl_pri_alt_set<br>for channel [2] | chnl_pri_alt_set<br>for channel [1] | chnl_pri_alt_set<br>for channel [0] |

Таблица 426 – Назначение разрядов регистра chnl pri alt set

| №    | Функциональное   |                                                                    | писание         |
|------|------------------|--------------------------------------------------------------------|-----------------|
| бита | имя бита         | назначения и принимаемых значений                                  |                 |
| 310  | chnl_pri_alt_set |                                                                    |                 |
|      |                  | DMA, $II$ $II$ $II$ $II$ $II$ $II$ $II$ $I$                        | ;               |
|      |                  | При записи: $ [C] = 0 \qquad . \\                                $ | [C] 0;<br>DMA . |
|      |                  | . <u>Примечание</u> — chnl_pri_alt_set[C] : - 4- DMA  « »;         | DMA             |

| - DMA       |     |
|-------------|-----|
|             | DMA |
| - »;<br>DMA |     |
| DMA :       |     |
| - <b>«</b>  |     |
| »;<br>- «   |     |
| ;           |     |

#### 29.6.14 MDR\_DMA->CHNL\_PRI\_ALT\_CLR

/

. DMA

428 chnl\_pri\_alt\_clr.

Таблица 427 – Регистр сброса первичной/альтернативной структуры управляющих данных каналов

|        |                                      | <b>V</b> 1 |                                     |                                     |                                     |
|--------|--------------------------------------|------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Номер  | 31                                   | •••••      | 2                                   | 1                                   | 0                                   |
| Доступ | WO                                   | •••••      | WO                                  | WO                                  | WO                                  |
| Сброс  | 0                                    | •••••      | 0                                   | 0                                   | 0                                   |
|        | chnl_pri_alt_clr<br>for channel [31] | •••••      | chnl_pri_alt_clr<br>for channel [2] | chnl_pri_alt_clr<br>for channel [1] | chnl_pri_alt_clr<br>for channel [0] |

Таблица 428 – Назначение разрядов регистра chnl\_pri\_alt\_clr

| №    | Функциональное   | Расшифровка функционального имени бита, краткое описание |
|------|------------------|----------------------------------------------------------|
| бита | имя бита         | назначения и принимаемых значений                        |
| 310  | chnl_pri_alt_clr |                                                          |
|      |                  |                                                          |
|      |                  | DMA.                                                     |
|      |                  | При записи:                                              |
|      |                  | [C] = 0 		 .                                             |
|      |                  | chnl_pri_alt_set                                         |
|      |                  | ;                                                        |
|      |                  | [C] = 1                                                  |
|      |                  | DMA .                                                    |
|      |                  | ,                                                        |
|      |                  |                                                          |

# Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| <u>Примечание</u> – chnl_pri_alt_clr[C] | 4-          | :<br>DMA | ,        | DMA |
|-----------------------------------------|-------------|----------|----------|-----|
| -                                       | »;          | DMA      | <b>«</b> | DMA |
| -                                       | - »;<br>DMA | :        | DMA      |     |
| - «     -<br>-                          | »<br>»      | «<br>«   |          |     |
|                                         | <b>»</b>    |          |          |     |

#### 29.6.15 MDR\_DMA->CHNL\_PRIORITY\_SET

DMA. DMA.

chnl\_priority\_set.

#### Таблица 429 – Регистр установки приоритета каналов

|        |                                      | - ·   |                                      |                                      |                                      |
|--------|--------------------------------------|-------|--------------------------------------|--------------------------------------|--------------------------------------|
| Номер  | 31                                   | ••••• | 2                                    | 1                                    | 0                                    |
| Доступ | R/W                                  | ••••• | R/W                                  | R/W                                  | R/W                                  |
| Сброс  | 0                                    | ••••• | 0                                    | 0                                    | 0                                    |
|        | chnl_priorit_set<br>for channel [31] | ••••• | chnl_priority_set<br>for channel [2] | chnl_priority_set<br>for channel [1] | chnl_priority_set<br>for channel [0] |

#### Таблица 430 – Назначение разрядов регистра chnl\_priority\_set

| №<br>бита | Функциональное имя бита | Расшифровка функци<br>описание назначения |             | · -   | <i>y</i> <u></u> |
|-----------|-------------------------|-------------------------------------------|-------------|-------|------------------|
| 310       | chnl_priority_set       |                                           | •           | DMA,  |                  |
|           |                         | При чтении:                               | DM          | IA.   |                  |
|           |                         | [C] = 0                                   | ,           | DMA . |                  |
|           |                         | [C] = 1                                   | ,           | DMA   |                  |
|           |                         | При записи:<br>[C] = 0<br>chnl            | _priority_d | r     |                  |
|           |                         | [C] = 1                                   | C           | DMA   | ,                |
|           |                         | ,                                         | •           |       | ,                |

#### 29.6.16 MDR\_DMA->CHNL\_PRIORITY\_CLR

**DMA** 432 chnl\_priority\_clr. Таблица 431 – Регистр сброса приоритета каналов Номер 31 2 1 0 WO WO WO Доступ WO ••••• Сброс 0 0 0 0 chnl\_priority\_clr chnl\_priority\_clr chnl\_priority\_clr chnl\_priorit\_clr for channel [31] for channel [2] for channel for channel

Таблица 432 – Назначение разрядов регистра chnl priority clr

| No     | Функциональное    | Расшифровка фу                | ункционального имени бита, краткое от | тисание |
|--------|-------------------|-------------------------------|---------------------------------------|---------|
| бита   | имя бита          | назначения и пр               | инимаемых значений                    |         |
| [31:0] | chnl_priority_clr |                               |                                       | DMA     |
|        |                   | При записи:<br>[C] = 0<br>chn | nl_priority_set                       | С       |
|        |                   | [C] = 1                       | DMA                                   |         |
|        |                   | ,                             | •                                     | ,       |

#### 29.6.17 MDR\_DMA->ERR\_CLR

dma\_err 0. dma\_err.

434 err\_clr.

#### Таблица 433 – Регистр сброса флага ошибки

|   | 311 | 0       |
|---|-----|---------|
|   | U   | R/W     |
| С | 0   | 0       |
|   | -   | err_clr |

#### Таблица 434 – Назначение разрядов регистра err\_clr

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |    |  |  |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|----|--|--|--|
| 311       | -                       | . 0                                                                                        |    |  |  |  |
| 0         | err_clr                 | 0,                                                                                         |    |  |  |  |
|           |                         | ( ) dma_err.                                                                               |    |  |  |  |
|           |                         | При чтении:                                                                                |    |  |  |  |
|           |                         | [C] = 0 , dma_err                                                                          | 0; |  |  |  |
|           |                         | [C] = 1 , dma_err                                                                          | 1. |  |  |  |
|           |                         | При записи:                                                                                |    |  |  |  |
|           |                         | [C] =0 . dma_err                                                                           |    |  |  |  |
|           |                         | ;                                                                                          |    |  |  |  |
|           |                         | [C] =1 ( ) dma_err                                                                         | 0. |  |  |  |
|           |                         | Примечание – dma_err                                                                       |    |  |  |  |
|           |                         | AHB-Lite,                                                                                  |    |  |  |  |
|           |                         | , , , ( dma_err)                                                                           |    |  |  |  |
|           |                         | ( )                                                                                        |    |  |  |  |

## 30 Прерывания и исключения

Inactive -Active Pending Pending -Pending Active -Active Active Pending pending 30.1 Типы исключений 30.1.1 RESET **RESET** RESET. **RESET RESET** privileged thread 30.1.2 NON MASKABLE INTERRUPT (NMI) (NMI) - 2. Примечание -1986 NMI RESET. 30.1.3 **Hard Fault** Hard Fault . Hard fault -1, 30.1.4 **Memory Management fault** Memory Management fault MPU

EXECUTE NEVER (XN), MPU **30.1.5** Bus Fault **Usage Fault** 30.1.6 **USAGE FAULT** halfword word; 30.1.7 SVCall Supervisor Call (SVCALL) SVC. SVC 30.1.8 **PendSV** PendSV PendSV 30.1.9 **SysTick** SysTick SysTick. 30.2 Прерывания (IRQ) IRQ -

Таблица 435 – Различные типы исключений

| Ном<br>исключ | Номер IRQ | Тип   | Приоритет | Адрес вектора<br>обработчика<br>(смещение) | Активация |
|---------------|-----------|-------|-----------|--------------------------------------------|-----------|
| 1             | -         | RESET | -3,       | 0x0000_0004                                |           |

#### Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| Номер<br>исключения | Номер IRQ | Тип         | Приоритет | Адрес вектора<br>обработчика | Активация |
|---------------------|-----------|-------------|-----------|------------------------------|-----------|
|                     |           |             |           | (смещение)                   |           |
| 2                   | -14       | NMI         | -2        | 0x0000_0008                  |           |
| 3                   | -13       | Hard Fault  | -1        | 0x0000_000C                  | -         |
| 4                   | -12       | Memory      |           | 0x0000_0010                  |           |
|                     |           | Management  |           |                              |           |
|                     |           | Fault       |           |                              |           |
| 5                   | -11       | Bus Fault   |           | 0x0000_0014                  | /         |
|                     |           |             |           |                              |           |
| 6                   | -10       | Usage Fault |           | 0x0000_0018                  |           |
| 7-10                | -         | -           | -         |                              | -         |
| 11                  | -5        | SVCall      |           | 0x0000_002C                  |           |
| 12-13               | -         | -           | -         |                              | -         |
| 14                  | -2        | PendSV      |           | 0x0000_0038                  |           |
| 15                  | -1        | SysTick     |           | 0x0000_003C                  |           |
| 16                  | 0         | IRQ         |           | 0x0000 0040                  |           |
|                     |           | _           |           | _                            |           |

RESET,

Privileged

#### 30.3 Обработчики исключений

Процедуры обработки прерываний (Interrupt Service Routines – ISRs)

IRQ0 IRQ31

ISR.

Обработчики ошибок (Fault Handlers)

Hard fault, memory management fault, usage fault bus fault.

Системные обработчики (System handlers)

NMI, PendSV, SVCall SysTick.

#### 30.4 Таблица векторов

**RESET** 

133

1,

Thumb

| Exception number | IRQ number | Offset           | Vector                  |
|------------------|------------|------------------|-------------------------|
| 47               | 31         | 0×00BC           | IRQ31                   |
| ¥                | •          |                  |                         |
|                  | :          |                  |                         |
| •                | *          | 0×004C           |                         |
| 18               | 2          | 0×0048           | IRQ2                    |
| 17               | 1          | 0×0044           | IRQ1                    |
| 16               | 0          | 0×0044           | IRQ0                    |
| 15               | -1         | 0×0040           | Systick                 |
| 14               | -2         | 5. Other 199     | PendSV                  |
| 13               |            | 0×0038           | Reserved                |
| 12               |            |                  | Reserved for Debug      |
| 11               | -5         | 0 0000           | SVCall                  |
| 10               |            | 0×002C           |                         |
| 9                |            |                  | Deserved                |
| 8                |            |                  | Reserved                |
| 7                |            |                  |                         |
| 6                | -10        | • • • • • •      | Usage fault             |
| 5                | -11        | 0×0018           | Bus fault               |
| 4                | -12        | 0×0014           | Memory management fault |
| 3                | -13        | <b>0</b> ×0010   | Hard fault              |
| 2                | -14        | 0×000C           | Reserved                |
| 1                |            | 0×0008           | Reset                   |
|                  |            | 0×0004<br>0×0000 | Initial SP value        |

Рисунок 133. Таблица векторов исключений и прерываний

| 0x00000000. | privileged |            |
|-------------|------------|------------|
|             | VTOR.      | 0x00000080 |
| 0x3fffff80. | VTOR.      |            |

# 30.5 Приоритеты исключений RESET Hard Fault. 0. 0 7. RESET, Hard Fault NMI, Группировка приоритетов прерываний 30.5.1 **NVIC** Вход в обработчик и выход из обработчика 30.6 30.6.1 Приоритетное прерывание ),

30.6.2

Возврат

**«** 

|    | exce   | ption).                                          | (late-arriving    |
|----|--------|--------------------------------------------------|-------------------|
|    | »      | ,<br>«                                           |                   |
|    | 30.6.3 | Передача управления без восстановления контекст  | a (tail-chaining) |
|    | ,      | , ,                                              | ,                 |
|    |        | ,                                                |                   |
|    | 30.6.4 | Запоздавшее исключение (late-arriving exception) |                   |
|    |        |                                                  |                   |
|    |        |                                                  |                   |
|    | 30.6.5 | Вход в процедуру обработки исключения            |                   |
|    |        | :                                                |                   |
|    | _      | (thread mode);<br>,                              |                   |
|    |        |                                                  |                   |
|    |        | ,                                                |                   |
|    | _<br>_ | R0-R3, R12;<br>;                                 |                   |
|    | _      | PSR;<br>LR.                                      |                   |
|    |        | STKALIGN                                         | (CCR)             |
| 1, |        |                                                  | •                 |

LR EXC\_RETURN,

« (late-arriving exception)».

#### 30.6.6 Возврат из обработчика исключения

**EXC\_RETURN** 

EXC\_RETURN[3:0] 436.

EXC\_RETURN [31:4] 0xfffffff.

PC

#### Таблица 436 – Возврат из обработчика исключения

| EXC_RETURN[3:0] | Описание |
|-----------------|----------|
| bXXX0           |          |
| b0001           |          |
|                 | MSP.     |
|                 | MSP      |
| b0011           |          |
| b01X1           |          |
| b1001           |          |
|                 | MSP.     |
|                 | MSP      |
| b1101           |          |
|                 | PSP.     |
|                 | PSP      |
| b1X11           |          |

## 30.7 Обработка отказов

: - : ; - ;

BX;
- (Non-Executable – XN);
- MPU

#### 30.7.1 Типы отказов

. "

#### Таблица 437 – Отказы

| Отказ      | Обработ- | Наименование  | Регистр отказа |
|------------|----------|---------------|----------------|
|            | чик      | бита регистра |                |
|            |          | VECTTBL       | «              |
|            |          |               | »              |
|            |          | FORCED        | "              |
| :          |          | -             | «              |
| -          |          | IACCVIOL      | »,             |
| -          |          | DACCVIOL      | «              |
| -          |          | MSTKERR       | »              |
| -          |          | MUNSKERR      |                |
| :          |          | -             |                |
| -          |          | STKERR        | «              |
| -          |          | UNSTKERR      | »,             |
| -          |          | IBUSERR       | «              |
|            |          | PRECISERR     | »              |
|            |          | IMPRECISERR   |                |
|            |          | NOCP          |                |
|            |          | UNDEFINSTR    |                |
|            | ,        | INVSTATE      |                |
| *)         |          |               | « ,            |
| EXC_RETURN |          | INVPC         |                |
|            |          | UNALIGNED     | »              |
|            |          |               |                |
| 0          |          | DIVBYZERO     |                |

\* \_ .

#### 30.7.2 Эскалация отказов и тяжелые отказы

| fault)                | ,                       | , . "SCB->SHP[x]".<br>. "SCB->SHCSR". | (hard  |
|-----------------------|-------------------------|---------------------------------------|--------|
| -                     | ,                       |                                       | ,      |
| _                     | :                       | (escalation).                         |        |
| _                     | ,                       | ;                                     |        |
| _                     | •                       | ;                                     |        |
| -                     | ,                       |                                       |        |
| ,                     | ,                       | -                                     | ,      |
| NIMAL                 | Reset                   | NMI.                                  | Reset, |
| NMI,<br><b>30.7.3</b> | Регистры состояния и ад | реса отказа                           |        |

Таблица 438 – Регистры состояния и адреса отказа

| Обработчик | Регистр<br>состояния | Регистр<br>адреса | Описание регистров |
|------------|----------------------|-------------------|--------------------|
|            | HFSR                 | 1                 | ""                 |
|            | MMFSR                | MMFAR             | ii                 |
|            | BFSR                 | BFAR              | "                  |
| ,          | UFSR                 | 1                 | , , ,              |

| 30.7.4 | Блокировка |
|--------|------------|
|--------|------------|

30.8 Управление электропитанием

Cortex-M3
):

Deep Sleep;
Sleep;
Standby.

SLEEPDEEP SCR ( . " ").

30.8.1 Переход в режим пониженного энергопотребления

30.8.2 Ожидание прерывания

WFI (wait for interrupt)

30.8.3 Ожидание события

WFE (wait for event)

0, . 1,

30.8.4 Переход в режим ожидания по выходу из обработчика исключения (режим Sleep)

SLEEPONEXIT SCR 1.

#### 30.8.5 Выход из состояния ожидания

#### 30.8.5.1 Выход из ожидания по команде WFI и в режиме Sleep

PRIMASK 1, FAULTMASK - 0.

PRIMASK 0.

#### 30.8.5.2 Выход из ожидания по команде WFE

SEVONPEND SCR 1

SCR

#### 30.8.6 Рекомендации по программированию режима энергопотребления

ANSI C WFI WFE. CMSIS

void \_\_WFE(void) // Wait for Event
void \_WFI(void) // Wait for Interrupt

IRQ0 IRQ31

#### Таблица 439 – Формирование прерывания с IRQ0 до IRQ31

| Прерывания | Блок | Принцип формирования               |
|------------|------|------------------------------------|
| IRQ0       | CAN1 | CAN.                               |
|            |      | GLB_INT_EN                         |
|            |      | RX_INT_EN[31:0]                    |
|            |      | EX_INT_EN[31:0]                    |
|            |      | ERR_INT_EN (ACKERR FRAMEERR CRCERR |
|            |      | BSERR BITERR)                      |
|            |      | ERR OVER INT EN REC > CAN ERR MAX  |
|            |      | TEC > CAN_ERR_MAX                  |
| IRQ1       | CAN2 |                                    |

| Прерывания  | Блок    | Принцип формирования                      |
|-------------|---------|-------------------------------------------|
| IRQ2        | USB     | USB Host                                  |
|             |         | . HostSOFSent, HostConnEvent, HostResume, |
|             |         | HostTransDone.  USB Slave                 |
|             |         | SlaveNAKSent SlaveSOFRXed                 |
|             |         | SlaveResetEvent SlaveResume               |
|             |         | SlaveTransDone                            |
| IRQ3IRQ4    |         |                                           |
| IRQ5        | DMA     | DMA DMA_ERR DMA_DONE. DMA                 |
|             |         | Error signaling DMA                       |
| IRQ6        | UART1   | UARTINTR                                  |
| IRQ7        | UART2   | UARTINTR                                  |
| IRQ8        | SSP1    | SSPINTR                                   |
| IRQ9        |         |                                           |
| IRQ10       | I2C     | INT EN_INT                                |
| IRQ11       | POWER   | POWER Detecor                             |
| IRQ12       | WWDG    | WWDG                                      |
| IRQ13       |         |                                           |
| IRQ14       | Timer 1 | TIM_STATUS TIM_IE                         |
| IRQ15       | Timer 2 |                                           |
| IRQ16       | Timer 3 |                                           |
| IRQ17       | ADC     | EOCIF_1 AWOIF_1 EOCIF_2 AWOIF_2           |
| IRQ18       |         |                                           |
| IRQ19       | COMP    | Rst_Sy1                                   |
| IRQ20       | SSP2    | SSPINTR                                   |
| IRQ21 IRQ26 |         |                                           |
| IRQ27       | BACKUP  | ВКР                                       |
| IRQ28       | _       | EXT_INT1.                                 |
|             | 1       |                                           |
|             |         | 0 -                                       |
| IDO20       |         | 1 –                                       |
| IRQ29       | 2       | EXT_INT2.                                 |
|             | 2       | 0 –                                       |
|             |         | 1 –                                       |
| IRQ30       |         | EXT_INT3.                                 |
| INQSU       | 3       | EAT_HVIJ.                                 |
|             | 3       | 0 –                                       |
|             |         | 1 –                                       |
| IRQ31       |         | EXT_INT4.                                 |
|             | 4       | 2211_1(1)                                 |
|             | •       | 0 –                                       |
|             |         | 1 –                                       |
|             |         |                                           |

## 31 Контроллер прерываний NVIC

> 440. Таблица 440 – Обобщенная информация о регистрах контроллера NVIC

| Адрес     | Название |    | -      | Значение после | Описание   |
|-----------|----------|----|--------|----------------|------------|
| Підрес    | пизвиние | 1  | доступ | сброса         | o in cum c |
| 0xE000E10 | NVIC     |    |        |                |            |
| 0         |          |    |        |                | NVIC       |
| 0x000     | ISER[0]  | RW |        | 0x0000000      |            |
| •••       |          |    |        |                | ISER       |
| 0x01C     | ISER[7]  |    |        |                |            |
| •••       |          |    |        |                |            |
| 0x080     | ICER[0]  | RW |        | 0x0000000      |            |
|           |          |    |        |                | I ER       |
| 0x09C     | ICER[7]  |    |        |                |            |
|           |          |    |        |                |            |
| 0x100     | ISPR[0]  | RW |        | 0x0000000      |            |
|           |          |    |        |                |            |
| 0x11C     | ISPR[7]  |    |        |                | ISPR       |
|           |          |    |        |                |            |
| 0x180     | ICPR[0]  | RW |        | 0x00000000     |            |
|           |          |    |        |                |            |
| 0x19C     | ICPR[7]  |    |        |                | ICPR       |
| •••       |          |    |        |                |            |
| 0x200     | IABR[0]  | RO |        | 0x0000000      |            |
|           |          |    |        |                | IABR       |
| 0x21C     | IABR[7]  |    |        |                |            |
|           |          |    |        |                |            |

| Адрес | Название     | Тип | Доступ | Значение после | Описание |
|-------|--------------|-----|--------|----------------|----------|
|       |              |     |        | сброса         |          |
| 0x300 | IP[3],IP[2], | RW  |        | 0x00000000     |          |
|       | IP[1],IP[0]  |     |        |                | IP       |
|       |              |     |        |                |          |
| 0x3F0 | IP[239],     |     |        |                |          |
|       | IP[238],     |     |        |                |          |
|       | IP[237],     |     |        |                |          |
|       | IP[236]      |     |        |                |          |
|       |              |     |        |                |          |
| 0xE00 | STIR         | WO  |        | 0x00000000     |          |
|       |              |     | *)     |                |          |
|       |              |     |        |                | STIR     |

\* \_

### 31.1 Упрощенный доступ к регистрам контроллера прерываний

**CMSIS NVIC** 32-ISER[0] ISER0; ICER[0] ICER0; ISPR[0] ISPR0; ICPR[0] ICPR0; IABR[0] IABR0; 3-IP[0]...IP[29] IPR0-IPR7, IP[n] **CMSIS** (atomic) NVIC\_SetPriority NVIC». IRQ) 441 CMSIS,

Таблица 441 – Распределение прерываний в переменных прерывания

|                         | Элементы массивов CMSIS*) |         |                           |                             |                       |  |
|-------------------------|---------------------------|---------|---------------------------|-----------------------------|-----------------------|--|
| <b>Номер</b> прерывания | Разрешение                | Запрет  | Установка режима ожидания | Сброс<br>режима<br>ожидания | Признак<br>активности |  |
| 0-31                    | ISER[0]                   | ICER[0] | ISPR[0]                   | ICPR[0]                     | IABR[0]               |  |

\* \_

NVIC, , ICER[1] ICER1

| 31.1.1 | NVIC->ISER[x]                                                           |
|--------|-------------------------------------------------------------------------|
|        | ISER0 ( ) ,                                                             |
|        | ( ).                                                                    |
|        | Таблица 442 – Регистр разрешения прерываний                             |
| Номер  | 310                                                                     |
| Доступ | R/W                                                                     |
| Сброс  | 0                                                                       |
| Сорос  | SETENA bits                                                             |
|        |                                                                         |
|        | SETENA:                                                                 |
|        | и <b>сь</b> : 0 — , 1 — ;<br>ние: 0 — , 1 — .                           |
| 4161   | ,                                                                       |
| NVIC   | ,                                                                       |
| 14710  | . NVIC                                                                  |
|        | , INVIC                                                                 |
|        |                                                                         |
| 31.1.2 | NVIC->ICER[x]                                                           |
|        |                                                                         |
|        | ICER0 ( ) ,                                                             |
|        | ( ).                                                                    |
|        | ` Таблица 443 – Регистр запрета прерываний                              |
| Номер  | 31 0                                                                    |
| Доступ | R/W                                                                     |
| Сброс  | 0                                                                       |
|        | CLRENA                                                                  |
|        | CLDENA                                                                  |
| 2077   | CLRENA:                                                                 |
|        | ись: 0 — , 1 — ;<br>ние: 0 — , 1 — .                                    |
| 4161   | ние. 0 – , 1 – .                                                        |
| 31.1.3 | NVIC->ISPR[x]                                                           |
|        |                                                                         |
|        | LODDO                                                                   |
|        | ISPR0                                                                   |
| (      | ).                                                                      |
| (      | л.<br>Таблица 444 — Регистр установки состояния ожидания для прерывания |
| Номер  | 310                                                                     |
| Доступ | R/W                                                                     |
| Сброс  | 0                                                                       |
| Сорос  | SETPEND                                                                 |
|        |                                                                         |
|        | SETPEND:                                                                |
|        | ись: 0 — , 1 — ;                                                        |
| पास    | ние: 0 — , 1 —                                                          |
| 1      | I ISPR, :                                                               |
| - '    | <u>-</u>                                                                |
| _      | ,                                                                       |
|        | •                                                                       |

#### 31.1.4 NVIC->ICPR[x]

ICPR0 ( ) , ( ).

Таблица 445 – Регистр сброса состояния ожидания для прерывания

| Номер  | 310     |
|--------|---------|
| Доступ | R/W     |
| Сброс  | 0       |
|        | CLRPEND |

CLRPEND: запись: 0 — , 1 — ; чтение: 0 — , 1 -

ICPR,

31.1.5 NVIC->IABR[x]

1

. .

ICPR0 , ( 446).

Таблица 446 – Регистр активных прерываний

| Номер  | 310    |
|--------|--------|
| Доступ | RO     |
| Сброс  | 0      |
|        | ACTIVE |

ACTIVE:

**чтение**: 0 — 1 —

#### 31.1.6 NVIC->IP[x]

IPR0-IPR7 3-

IP[0] .. IP[29] CMSIS,

#### Таблица 447 – Регистры приоритета прерываний

IP

| Номер  | 3116 | 158    | 70     |
|--------|------|--------|--------|
| Доступ | U    | R/W    | R/W    |
| Сброс  | 0    | 0      | 0      |
|        | -    | IP[29] | IP[28] |

IP

| Номер  | 3124     | 2316     | 158      | 70     |
|--------|----------|----------|----------|--------|
| Доступ | R/W      | R/W      | R/W      | R/W    |
| Сброс  | 0        | 0        | 0        | 0      |
|        | IP[4m+3] | IP[4m+2] | IP[4m+1] | IP[4m] |

IP

| Номер  | 3124  | 2316  | 158   | 70    |
|--------|-------|-------|-------|-------|
| Доступ | R/W   | R/W   | R/W   | R/W   |
| Сброс  | 0     | 0     | 0     | 0     |
|        | IP[3] | IP[2] | IP[1] | IP[0] |

0 7,

[4:0] [7:5]

**IPR** Ν

M = N DIV 4;Μ N MOD 4

0 –

[7:0]; [15:8]; 1 -

2 – [23:16]; 3 – [31:24].

#### 31.1.7 NVIC->STIR

STIR
(SGI – Software Generated Interrupt).

USERSETMPEND SCR 1,

STIR ( . " ").

Таблица 448 – Регистр программного формирования прерывания

| Номер  | 319 | 80    |
|--------|-----|-------|
| Доступ | U   | R/W   |
| Сброс  | 0   | 0     |
|        | -   | INTID |

INTID - 0 - 239. *Например:* b000000011 IRQ3.

### 31.2 Прерывания, срабатывающие по уровню сигнала

,

### 31.3 Аппаратное и программное управление прерываниями

,

- NVIC ,

– NVIC

Cortex-M3

ISPR0 ( . . NVIC->ISPR[x]) STIR ( . . NVIC->STIR).

: -, :

- NVIC .

; -,

### 31.4 Рекомендации по работе с контроллером прерываний

SCB->VTOR.

CPSIE I CPSID I. CMSIS

void \_\_disable\_irq(void) // Disable Interrupts
void \_\_enable irq(void) // Enable Interrupts

, CMSIS

**NVIC:** 

Таблица 449 – Функции CMSIS для управления контроллером прерываний

| Функция                                                | Описание |         |
|--------------------------------------------------------|----------|---------|
| void NVIC_SetPriorityGrouping                          |          |         |
| (uint32_t priority_grouping)                           |          |         |
| void NVIC_EnableIRQ (IRQn_t IRQn)                      | IRQn     |         |
| void NVIC_DisableIRQ (IRQn_t IRQn)                     | IRQn     |         |
| uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn)              | TRUE,    |         |
| _                                                      | IRQn     | , FALSE |
|                                                        | _        |         |
| void NVIC_SetPendingIRQ (IRQn_t IRQn)                  | IRQn     |         |
| void NVIC_ClearPendingIRQ (IRQn_t IRQn)                |          |         |
|                                                        | IRQn     |         |
| uint32_t NVIC_GetActive (IRQn_t IRQn)                  | IRQ      |         |
| void NVIC SetDaionity (IDOn + IDOn vint22 + majority)  |          | IRQn    |
| void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) |          | IRQII   |
| uint32_t NVIC_GetPriority (IRQn_t IRQn)                | IRQn     | 1       |
| void NVIC_SystemReset (void)                           |          |         |

CMSIS.

## 32 Блок управления системой

SCB

450.

#### Таблица 450 – Обобщенная информация о регистрах блока управления системой

|            |              |     | -      | <del></del>           | C C C C C C C C C C C C C C C C C C C |
|------------|--------------|-----|--------|-----------------------|---------------------------------------|
| Адрес      | Имя          | Тип | Доступ | Значение после сброса | Описание                              |
| 0xE000E000 | InterruptTyp | e   |        |                       |                                       |
| 0x008      | ACTLR        | RW  | -      | 0x00000000            |                                       |
| 0xE000ED00 | SCB          |     |        |                       |                                       |
| 0x000      | CPUID        | RO  | -      | 0x412FC230            |                                       |
| 0x004      | ICSR         | RW  | -      | 0x00000000            |                                       |
| 0x008      | VTOR         | RW  | -      | 0x00000000            |                                       |
| 0x00C      | AIRCR        | RW  | -      | 0xFA050000            |                                       |
| 0x010      | SCR          | RW  | -      | 0x00000000            |                                       |
| 0x014      | CCR          | RW  | -      | 0x00000200            |                                       |
| 0x018      | SHPR1        | RW  | -      | 0x00000000            | 1                                     |
| 0x01C      | SHPR2        | RW  | -      | 0x00000000            | 2                                     |
| 0x020      | SHPR3        | RW  | -      | 0x00000000            | 3                                     |
| 0x024      | SHCRS        | RW  | -      | 0x00000000            |                                       |
| 0x028      | CFSR         | RW  | -      | 0x00000000            |                                       |
| 0x028      | MMSR         | RW  | -      | 0x00                  |                                       |
| 0x029      | BFSR         | RW  | -      | 0x00                  |                                       |
| 0x02A      | UFSR         | RW  | -      | 0x0000                | ,                                     |
| 0x02C      | HFSR         | RW  | -      | 0x00000000            |                                       |
| 0x034      | MMAR         | RW  | -      |                       |                                       |
| 0x038      | BFAR         | RW  | -      |                       |                                       |

# 32.1 Упрощенный доступ к регистрам блока управления системой

системой **CMSIS** SCB SHPR1-SHPR3 CMSIS SHP[0]...SHP[12]. 32.1.1 InterrupType->ACTLR **ACTLR** (IT folding); (default memory map); **ACTLR** Таблица 451 – Дополнительный регистр управления 31...3 Номер Доступ R/W R/W R/W U Сброс 0 0 0 0 **DISFOLD DISDEFWBUF DISMCYCINT** (IT folding) DISFOLD -1 **»**). . « DISDEFWBUF -1

(default memory map).

Cortex-M3.

DISMCYCINT – 1 (LDM STM).

, LDM STM

О вложении условных инструкций

IT-IT. , (IT folding), , (« »). DISFOLD 1.

,

#### 32.1.2 SCB->CPUID

CPUID

452.

#### Таблица 452 – Регистр идентификации процессора

| Сброс  | 0x41 | 0x2  | 0xF  | 0xC23 | 0x0 |
|--------|------|------|------|-------|-----|
| Доступ | RO   | RO   | RO   | RO    | RO  |
| Номер  | 3124 | 2320 | 1916 | 154   | 30  |

Implementer – 0x41 = ARM.

Variant – r rnpn : 0x2 = r2p0;

Constant – 0xF;

PartNo – : 0xC23 = Cortex-M3;

Revision – p rnpn : 0x0 = r2p0.

#### 32.1.3 SCB->ICSR

**ICSR** 

31...29

28

PendSV SysTick,

- ;

**-** , ;

25

**-** , ;

24

- , .

26

27

#### Таблица 453 – Регистр управления прерываниями

11

10 9

8...0

21...12

| U | R/W              | R/W       | R/W       | R/W       | U | R/W                   | R/W        | R/W         | R/W       | U | U | R/W        |
|---|------------------|-----------|-----------|-----------|---|-----------------------|------------|-------------|-----------|---|---|------------|
| 0 | 0                | 0         | 0         | 0         | 0 | 0                     | 0          | 0           | 0         | 0 | 0 | 0          |
| ı | <b>PENDSVSET</b> | PENDSVCLR | PENDSTSET | PENDSTCLR | ı | Reserved for<br>Debug | ISRPENDING | VECTPENDING | RETTOBASE |   | - | VECTACTIVE |

23

22

PENDSVSET (RW) -

PendSV.

Запись 0 — , 1 — PendSV

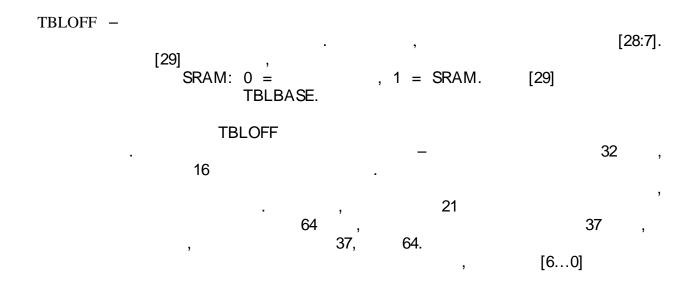
Чтение 0- PendSV , 1-

Запись 1— это единственно возможный способ перевода исключения PendSV в состояние ожидания обслуживания.

PENDSVCLR (WO) -

PendSV.

Запись 0 –


```
PendSV.
  Запись 1 –
PENDSTSET (RW) -
SysTick.
  Запись 0 –
  Запись 1 –
                               SysTick
  Чтение 0 –
                      SysTick
                                                   . 1 –
PENDSTCLR (WO) -
                                                                        SysTick.
  Запись 0 -
  Запись 1 -
                                                                  SysTick.
  Reserved for Debug use (RO) -
                                0.
ISRPENDING (RO) -
                         . 0 -
VECTPENDING (RO) -
                                                . 0 –
                                               BASEPRI
                                                          FAULTMASK,
                       PRIMASK.
RETTOBASE (RO) -
                      .0-
                                      1 - 1
VECTACTIVE (RO) -
                                                     . 0 -
                           VECTACTIVE
            (IRQ)
                                                           16.
              ICSR
                           1
                                PENDSV SET
                                             PENDSVCLR:
                           1
                                PENDSTSET
                                             PENDSTCLR.
    32.1.4
            SCB->VTOR
```

VTOR

0x00000000.

Таблица 454 – Регистр смещения таблицы векторов прерываний

|        |    | -  | TBLOFF |     | Reserved |
|--------|----|----|--------|-----|----------|
| Сброс  | 0  | 0  | 0      | 0   | 0        |
| Доступ | U  | U  | R/W    | R/W | R/W      |
| Номер  | 31 | 30 | 29     | 7   | 60       |
|        |    |    |        | _   |          |



#### 32.1.5 **SCB->AIRCR**

# **32.1.5.1** Регистр управления прерываниями и программного сброса AIRCR ,

(endian)

**VECTKEY** 

0x05FA,

Таблица 455 – Регистр управления прерываниями и программного сброса

| Номер  | 3116                                          | 15        | 1411 | 108      | 73 | 2           | 1             | 0         |
|--------|-----------------------------------------------|-----------|------|----------|----|-------------|---------------|-----------|
| Доступ | R/W                                           | R/W       | U    | R/W      | U  | R/W         | R/W           | R/W       |
| Сброс  | 0                                             | 0         | 0    | 0        | 0  | 0           | 0             | 0         |
|        | On Read:<br>VECTKEYSTAT,<br>On Write: VECTKEY | ENDIANESS | -    | PRIGROUP | -  | SYSRESETREQ | VECTCLRACTIVE | VECTRESET |

PRIGROUP - , PRI\_n

#### **PRIGROUP**

#### Таблица 456 – Группировка приоритетов прерываний

| PRIGROUP | Значение пр                    | иоритета в по            | оле PRI_N[7:0]           | Общее количество |          |  |  |
|----------|--------------------------------|--------------------------|--------------------------|------------------|----------|--|--|
|          | Положение<br>двоичной<br>точки | Биты<br>номера<br>группы | Биты номера<br>подгруппы | Групп            | подгрупп |  |  |
| 0b100    | bxxx.00000                     | [7:5]                    | None                     | 8                | 1        |  |  |
| 0b101    | bxx.y00000                     | [7:6]                    | 5                        | 4                | 2        |  |  |
| 0b110    | bx.yy00000                     | [7]                      | [6:5]                    | 2                | 4        |  |  |
| 0b111    | b.yyy00000                     | None                     | [7:5]                    | 1                | 8        |  |  |

SYSRESETREQ (WO) - . 0 - , 1 - 0.

VECTCLRACTIVE (WO) – . 0.

VECTRESET (WO) – . 0.

#### 32.1.6 SCB->SCR

SCR

#### Таблица 457 – Регистр управления системой

| Номер  | 315 | 4         | 3 | 2         | 1          | 0 |
|--------|-----|-----------|---|-----------|------------|---|
| Доступ | U   | R/W       | U | R/W       | R/W        | U |
| Сброс  | 0   | 0         | 0 | 0         | 0          | 0 |
|        | -   | SEVONPEND |   | SLEEPDEEP | SLEEONEXIT |   |

SEVONPEND -

. 0 -

; 1 –

WFE,

SEV.

SLEEPDEEP - : 0- (Sleep);

1 – (Deep Sleep).

SLEEPONEXIT -

: 0 - , 1 -

#### 32.1.7 SCB->CCR

CCR

:

FAULTMASK;

- STIR ( . NVIC->STIR).

Таблица 458 – Регистр конфигурации и управления

|        |      |          |           |    |           |             |   |              | -              |
|--------|------|----------|-----------|----|-----------|-------------|---|--------------|----------------|
| Номер  | 3110 | 9        | 8         | 75 | 4         | 3           | 2 | 1            | 0              |
| Доступ | U    | R/W      | R/W       | U  | R/W       | R/W         | U | R/W          | R/W            |
| Сброс  | 0    | 0        | 0         | 0  | 0         | 0           | 0 | 0            | 0              |
|        | -    | STKALIGN | BFHFNMIGN |    | DIV_O_TRP | UNALIGN_TRP | - | USERSETMPEND | NONBASETHRDENA |

STKALIGN : 0 -

; 1 - 8 [9]

PSR .

BFHFNMIGN -1 -2

, FAULTMASK. 0 =

; 1 = -1 -2

, I — -1 -2 , , , -

,

<del>-</del> .

. 0.

```
UNALIGN_TRP
       . 0 =
  1 =
                                  (usage fault).
                                             LDM, STM, LDRD
                                                                  STRD
                                             UNALIGN_TRP.
USERSETMPEND
                                                  STIR
                                                        ( . NVIC->STIR)
                              . 0 =
                                               , 1 =
NONEBASETHRDENA
  (Thread mode): 0 =
                             , 1 =
                                                                EXC_RETURN
    32.1.8
           SCB->SHP[x]
                                            SHPR1-SHPR3
```

Таблица 459 – Поля приоритета обработчиков системных отказов

| Обработчик отказа | Поле    | Описание регистра |
|-------------------|---------|-------------------|
|                   | SHP[4]  |                   |
|                   | SHP[5]  | 1                 |
| (usage fault)     | SHP[6]  |                   |
| SVCall            | SHP[11] | 2                 |
| PendSV            | SHP[14] | 3                 |
| SysTick           | SHP[15] |                   |

[7...4],

1

PRI\_N

#### Таблица 460 – Регистр №1 приоритета системных обработчиков

| Номер  | 3124          | 2316  | 158   | 70    |
|--------|---------------|-------|-------|-------|
| Доступ | R/W           | R/W   | R/W   | R/W   |
| Сброс  | 0             | 0     | 0     | 0     |
|        | PRI_7: Резерв | PRI_6 | PRI_5 | PRI_4 |

PRI\_7 .
PRI\_6 6,
PRI\_5 5,
PRI\_4 4,

[3...0]

2

Таблица 461 – Регистр №2 приоритета системных обработчиков

|        | •      | <u> </u> |
|--------|--------|----------|
| Номер  | 3124   | 230      |
| Доступ | R/W    | U        |
| Сброс  | 0      | 0        |
|        | PRI_11 | -        |

PRI\_11

11, SVCall

3

#### Таблица 462 – Регистр №3 приоритета системных обработчиков

| Номер  | 3124   | 2316   | 15 0 |
|--------|--------|--------|------|
| Доступ | R/W    | R/W    | U    |
| Сброс  | 0      | 0      | 0    |
|        | PRI_15 | PRI_14 | •    |

PRI\_15

15, SysTick

PRI 14

14, PendSV

#### 32.1.9 SCB->SHCSR

SHCSR

JI TOOK

SVCall;

Таблица 463 – Регистр управления и состояния системных обработчиков

| Номер  | 3119 | 18          | 17          | 16          | 15           | 14             | 13             | 12             | 11         | 10        | 9 | 8          | 7          | 64 | 3           | 2 | 1           | 0           |
|--------|------|-------------|-------------|-------------|--------------|----------------|----------------|----------------|------------|-----------|---|------------|------------|----|-------------|---|-------------|-------------|
| Доступ | U    | R/W         | R/W         | R/W         | R/W          | R/W            | R/W            | R/W            | R/W        | R/W       | U | R/W        | R/W        | U  | R/W         | U | R/W         | R/W         |
| Сброс  | 0    | 0           | 0           | 0           | 0            | 0              | 0              | 0              | 0          | 0         | 0 | 0          | 0          | 0  | 0           | 0 | 0           | 0           |
|        | -    | USGFAULTENA | BUSFAULTENA | MEMFAULTENA | SVCALLPENDED | BUSFAULTPENDED | MEMFAULTPENDED | USGFAULTPENDED | SYSTICKACT | PENDSVACT |   | MONITORACT | CVCALLAVCT | 1  | USGFAULTACT | ' | BUSFAULTACT | MEMFAULTACT |

USGFAULTENA

, 1 –

, 0 **–** 

**BUSFAULTENA** 

, 1 - , 0 -

## Спецификация микросхем серии 1986BE9ху, К1986BE9ху, К1986BE9хуК, К1986BE92QI, К1986BE92QC, 1986BE91H4, К1986BE91H4, 1986BE94H4, К1986BE94H4

| MEMFAULTENA                              |    |   |    |      | ,       | 1 – |   | , 0 – |
|------------------------------------------|----|---|----|------|---------|-----|---|-------|
| SVCALLPENDED .                           |    |   |    | SVC, |         | 1,  |   |       |
| BUSFAULTPENDED .                         |    |   |    |      |         | ,   |   | 1,    |
| MEMFAULTPENDED .                         |    |   |    |      |         | ,   |   | 1,    |
| USGFAULTPENDED ,                         | 1, |   |    |      | ,       |     |   |       |
| SYSTICKACT .                             |    |   |    |      | SysTick | ,   |   | 1,    |
| PENDSVACT .                              |    |   |    |      | PendSV, |     |   | 1,    |
| MONITORACT .                             |    |   |    | ,    |         | 1,  |   |       |
| SVCALLACT                                |    |   |    | SVC, |         | 1,  |   |       |
| USGFAULTACT ,                            | 1, |   |    |      | ,       |     |   |       |
| BUSFAULTACT .                            |    |   |    |      |         | ,   |   | 1,    |
| MEMFAULTACT .                            |    |   |    |      |         | ,   |   | 1,    |
| <u>Примечания</u> :<br>- 0- ;<br>- 1 - 0 |    | 1 |    |      |         | ,   | , | ,     |
| - 1 -                                    |    |   |    | ,    |         | ,   | ; | 1     |
|                                          |    | ( | ), |      |         |     | , |       |

#### SHCSR.

, , ,

.

32.1.10 SCB->CFSR

**CFSR** 

(usage fault).

Таблица 464 – Регистр состояния отказов с конфигурируемым уровнем приоритета

| Номер  | 3116                         | 158              | 70                |
|--------|------------------------------|------------------|-------------------|
| Доступ | RO                           | RO               | RO                |
| Сброс  | 0                            | 0                | 0                 |
|        |                              |                  | Memory Management |
|        | Usage Fault Status Register: | Bus Fault Status | Fault             |
|        | UFSR                         | Register: BFSR   | Status Register:  |
|        |                              |                  | MMFSR             |

CFSR

CFSR

- 0xE000ED28 - CFSR;

- 0xE000ED28 - MMFSR;

- 0xE000ED28 - MMFSR BFSR;

- 0xE000ED29 - **BFSR**;

- 0xE000ED2A- UFSR.

, CFSR:

- ;

,

32.1.10.1 Поле MMFSR

MMFSR

|              |                   | ,     | Габлица 4 | <mark>1</mark> 65 – Регистр | состояни | я отказо     | в доступа | к памяти |
|--------------|-------------------|-------|-----------|-----------------------------|----------|--------------|-----------|----------|
| Номер        | 7                 | 6 5   | 4         | 3                           |          | 2            | 1         | 0        |
| Доступ       | RO                | U U   | RO        | RO                          |          | U            | RO        | RO       |
| Сброс        | 0                 | 0 0   | 0         | 0                           |          | 0            | 0         | 0        |
|              | MMARVALID         | -     | MSTKE     | RR MUNSTK                   | ERR      | - D          | ACCVIOL   | IACCVIOL |
| MMAR\<br>(MM | /ALID<br>AR): 0 = | MMA   | R         |                             |          | , 1          | =         |          |
|              |                   |       |           |                             | ,        |              |           |          |
|              |                   |       | 0.        |                             |          |              |           |          |
|              |                   |       |           |                             | ,        |              |           | MMAR     |
|              | •                 |       |           |                             |          |              |           |          |
| MSTKE        | RR                |       |           |                             |          |              |           |          |
|              |                   | : 0 = |           | , 1 =                       |          |              |           |          |
|              |                   | 4     |           |                             | CD       |              |           | •        |
|              | ,                 | 1,    |           |                             | SP -     | MMAR         |           | ,        |
|              |                   |       |           | •                           |          | IVIIVI7 (I C |           | •        |
| MUNST        | KERR              |       |           |                             |          |              |           |          |
|              |                   | : 0 = |           | , 1 =                       |          |              |           |          |
|              |                   |       |           |                             | •        |              |           |          |
|              |                   | ,     | ,         |                             | 1,       |              |           | ,        |
|              | •                 | ,     | ,         |                             | -,       |              |           | ,        |
|              |                   | MMAR  |           |                             |          |              |           |          |
| DACCV        | 101               |       |           |                             | : 0 =    |              | 1 _       |          |
| DACCV        | IOL               |       |           |                             |          |              | , 1 =     |          |
|              |                   | 1,    |           |                             | PC,      |              | ,         |          |
|              | ,                 |       |           | MMAR                        |          | ,            | ,         |          |
|              |                   |       |           | •                           |          |              |           |          |
| IACCVI       | Οl                |       |           |                             | : 0 =    |              | , 1 =     |          |
| 17 (00 ) 1   | OL .              |       |           |                             | . 0 –    |              | , . –     |          |
|              |                   |       |           |                             | ·        |              | ,         |          |
|              | (4:11 1)          |       | (XN),     |                             | ,        |              |           | MPU      |
|              | (disabled)        |       | •         |                             | 1,       |              |           | PC,      |
| MMA          | ,<br>،R           |       |           | ,                           |          | •            |           |          |
|              |                   |       |           |                             |          |              |           |          |

#### 32.1.10.2 Поле BFSR

BFSR ,

Таблица 466 – Регистр состояния отказов доступа к шине

| Сорос  | BFRVALID | - |   | STKERR | UNSTKERR | IMPRECISERR | PRECISERR | IBUSERR |
|--------|----------|---|---|--------|----------|-------------|-----------|---------|
| Сброс  | 0        | 0 | 0 | 0      | 0        | 0           | 0         | 0       |
| Доступ | RO       | U | U | RO     | RO       | RO          | RO        | RO      |
| Номер  | 7        | 6 | 5 | 4      | 3        | 2           | 1         | 0       |

| BFARVALID<br>0= | BFAR |           | 1 ,        | ,  | 1 = .     | (BFAR): |
|-----------------|------|-----------|------------|----|-----------|---------|
|                 | ,    |           | 0.         |    | ,         | ,       |
| (               | О.   | ,         | ,          |    | MMAR      |         |
| STKERR          |      | : 0 =     | , 1 =      |    |           |         |
|                 |      | 1,        |            | SP | -<br>BFAR | , .     |
| UNSTKERR        |      | : 0 =     | , 1 =      |    |           |         |
|                 |      | , ,       |            |    | 1,        | ,       |
|                 |      | BFAR      |            |    | •         |         |
| IMPRECISERR     |      |           |            |    | . 0 =     | , 1 =   |
| 1,              | ,    | ,<br>BFAR | ,          | ,  | ,         | ,       |
|                 |      | ,         | ·          | ,  | ,         |         |
| PRECISERR       |      |           | •          |    | . 0 =     | , 1 =   |
| 1,              |      | ,         | ,<br>BFAR. | ,  |           |         |

UFSR , . . .

| T ( 465 D               |                     |                | ~        |                  |
|-------------------------|---------------------|----------------|----------|------------------|
| Таблица 467 – Регистр с | остояния откязов.   | вызвянных с    | пшиокями | программирования |
| Tuotinga io. Ternerpe.  | ocrommin originate, | DDISDUIIIDIA ( |          | npor pammpobamm  |

| Номер  | 1510 | 9         | 8         | 74 | 3    | 2     | 1        | 0          |
|--------|------|-----------|-----------|----|------|-------|----------|------------|
| Доступ | U    | RO        | RO        | U  | RO   | RO    | RO       | RO         |
| Сброс  | 0    | 0         | 0         | 0  | 0    | 0     | 0        | 0          |
|        | -    | DIVBYZERO | UNALIGNED | -  | NOCP | INVPC | INVSTATE | UNDEFINSTR |

```
DIVBYZERO
                                 : 0 =
                                                        SDÍV
                                                                 UDIV
                       1 =
         0.
                                                 PC,
                        1,
                  1
                        DIV_0_TRP
                                          CCR ( . . "SCB->CCR").
UNALIGNED
                                                             : 0 =
                                       , 1 =
                  UNALIGN_TRP
                                        CCR ( . . "SCB->CCR").
             LDM, STM, LDRD, STRD,
                                                               UNALIGN_TRP.
NOCP
                               0 = 0
                                          1 = 1
                                                  PC. 0 =
INVPC
                                     PC
                                                         EXC_RETURN,
                                                           EXC RETURN.
        1,
INVSTATE
                          : 0 =
                                     , 1 =
                                            EPSR.
                                                               1,
         PC,
                    EPSR.
UNDEFINSTR
                                                    . 0 =
  PC,
                                    UFSR
                     1
                                            1,
```

#### 32.1.11 SCB->HFSR

**HFSR** 

, 0 1.

Таблица 468 – Регистр состояния тяжелого отказа

| Номер  | 31       | 30     | 292 | 1       | 0        |
|--------|----------|--------|-----|---------|----------|
| Доступ | R/W      | R/W    | U   | R/W     | R/W      |
| Сброс  | 0        | 0      | 0   | 0       | 0        |
|        | DEBUGEVT | FORCED | -   | VECTTBL | Reserved |

DEBUGEVT .

0,

FORCED , , (

): 0 = , 1 = . 1,

HFSR.

VECTTBL

: 0 = , 1 = . . 1, PC,

,

1 HFSR ,

1,

#### 32.1.12 SCB->MMFAR

MMFAR

#### Таблица 469 – Регистр адреса отказа доступа к памяти

| Номер  | 310     |
|--------|---------|
| Доступ | RO      |
| Сброс  | 0       |
|        | ADDRESS |

ADDRESS MMARVALID MMFSR 1,

MMFSR MMFAR

#### 32.1.13 SCB->BFAR

BFAR

#### Таблица 470 – Регистр адреса отказа доступа к шине

| Номер  | 310     |
|--------|---------|
| Доступ | RO      |
| Сброс  | 0       |
|        | ADDRESS |

ADDRESS BFARVALID BFSR 1,

BFSR BFAR

#### 32.1.14 Рекомендации по программированию блока управления системой

, CFSR SHPR1-SHPR3, CFSR SHPR1-SHPR3 ,

:

MMFAR BFAR;MMARVALID MMFSR, BFARVALID

BFSR. MMFAR BFAR

1.

MMFAR

BFAR,

## 33 Сторожевые таймеры

### 33.1 Описание регистров блока сторожевых таймеров

Таблица 471 – Описание регистров блока сторожевых таймеров

| Базовый Адрес | Название            | Описание |
|---------------|---------------------|----------|
| 0x4006_8000   | MDR_IWDG            | IWDG     |
| Смещение      |                     |          |
| 0x00          | MDR_IWDG->KR[15:0]  |          |
| 0 04          | MDR_IWDG->PR[2:0]   |          |
| 0x08          | MDR_IWDG->RLR[11:0] |          |
| 0x0C          | MDR_IWDG->SR[1:0]   |          |

#### Таблица 472 – Оконный сторожевой таймер

| Базовый Адрес | Название           | Описание |
|---------------|--------------------|----------|
| 0x4006_0000   | MDR_WWDG           | WWDG     |
| Смещение      |                    |          |
| 0x00          | MDR_WWDG->CR[7:0]  |          |
| 0 04          | MDR_WWDG->CFR[9:0] |          |
| 0x08          | MDR_WWDG->SR[0]    |          |

#### 33.1.1 MDR\_IWDG->KR

#### Таблица 473 – Регистр KR

| Номер  | 150       |
|--------|-----------|
| Доступ | WO        |
| Сброс  | 0         |
|        | KEY[15:0] |

#### Таблица 474 – Описание бит регистра KR

| N₂   | Функциональное | Расшифровка функционального имени бита, краткое |  |
|------|----------------|-------------------------------------------------|--|
| бита | имя бита       | описание назначения и принимаемых значений      |  |
| 3116 |                |                                                 |  |
| 150  | KEY[15:0]      | Значение ключа (только запись, читается 0000h). |  |
|      |                | AAAAh, ,                                        |  |
|      |                | · IWDT                                          |  |
|      |                |                                                 |  |

#### 33.1.2 MDR\_IWDG->PR

#### Таблица 475 – Регистр PR

| Номер  | 313 | 2   | 1   | 0   |
|--------|-----|-----|-----|-----|
| Доступ | U   | R/W | R/W | R/W |
| Сброс  | 0   | 0   | 0   | 0   |
|        | •   | PR2 | PR1 | PR0 |

#### Таблица 476 – Описание регистра PR

| №<br>бита | Функциональное имя бита | Расшифровка функционального имени бита, краткое описание назначения и принимаемых значений |              |             |  |  |
|-----------|-------------------------|--------------------------------------------------------------------------------------------|--------------|-------------|--|--|
| 313       |                         |                                                                                            |              |             |  |  |
| 20        | PR[2:0]                 | Делитель часто                                                                             | ты сторожево | го таймера: |  |  |
|           |                         | 000 -                                                                                      | 4            |             |  |  |
|           |                         | 001 -                                                                                      | 8            |             |  |  |
|           |                         | 010 -                                                                                      | 16           |             |  |  |
|           |                         | 011 -                                                                                      | 32           |             |  |  |
|           |                         | 100 -                                                                                      | 64           |             |  |  |
|           |                         | 101 -                                                                                      | 128          |             |  |  |
|           |                         | 110 -                                                                                      | 256          |             |  |  |
|           |                         | 111 –                                                                                      | 256          |             |  |  |
|           |                         |                                                                                            |              | ,           |  |  |
|           |                         | PVU = 0                                                                                    | SR           |             |  |  |
|           |                         |                                                                                            | IWDG         | LSI         |  |  |

#### 33.1.3 MDR\_IWDG->RLR

#### Таблица 477 – Регистр RLR

| Номер  | 3112 | 110       |
|--------|------|-----------|
| Доступ | U    | R/W       |
| Сброс  | 0    | 1         |
|        | -    | RLR[11:0] |

#### Таблица 478 – Описание регистра RLR

| №    | Функциональное | Расшифровка функционального имени бита, краткое |  |  |
|------|----------------|-------------------------------------------------|--|--|
| бита | имя бита       | описание назначения и принимаемых значений      |  |  |
| 3112 |                |                                                 |  |  |
| 110  | RLR[11:0]      | Значение перезагрузки сторожевого таймера.      |  |  |
|      |                |                                                 |  |  |
|      |                | KR.                                             |  |  |
|      |                | ,                                               |  |  |
|      |                | AAAAh KR.                                       |  |  |
|      |                | ,                                               |  |  |
|      |                |                                                 |  |  |
|      |                | ,                                               |  |  |
|      |                | RVU=0 SR                                        |  |  |

#### 33.1.4 MDR\_IWDG->SR

#### Таблица 479 – Регистр SR

| Номер  | 312 | 1   | 0   |
|--------|-----|-----|-----|
| Доступ | U   | RO  | RO  |
| Сброс  | 0   | 0   | 0   |
|        | -   | RVU | PVU |

#### Таблица 480 – Описание регистра SR

| No   | Функциональное | Расшифровка функционального имени бита, краткое       |
|------|----------------|-------------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений            |
| 312  |                | •                                                     |
| 1    | RVU            | Флаг обновления значения сторожевого таймера.         |
|      |                | ,                                                     |
|      |                |                                                       |
|      |                | • ,                                                   |
|      |                | •                                                     |
|      |                | ,                                                     |
| 0    | PVU            | Флаг обновления делителя частоты сторожевого таймера. |
|      |                | ,                                                     |
|      |                |                                                       |
|      |                | . ,                                                   |
|      |                |                                                       |
|      |                | ,                                                     |

#### 33.1.5 MDR\_WWDG->CR

#### Таблица 481 – Регистр CR

| Номер  | 318 | 7    | 6         | 5   | 4         | 3   | 2         | 1   | 0         |
|--------|-----|------|-----------|-----|-----------|-----|-----------|-----|-----------|
| Доступ | U   | R/W  | R/W       | R/W | R/W       | R/W | R/W       | R/W | R/W       |
| Сброс  |     | 0    | 1         | 1   | 1         | 1   | 1         | 1   | 1         |
|        | -   | WDGA | <b>T6</b> | T5  | <b>T4</b> | Т3  | <b>T2</b> | T1  | <b>T0</b> |

#### Таблица 482 – Описание бит регистра CR

| Nº<br>E | Функциональное | Расшифровка функционального имени бита, краткое описание         |  |  |
|---------|----------------|------------------------------------------------------------------|--|--|
| бита    | имя бита       | назначения и принимаемых значений                                |  |  |
| 318     |                |                                                                  |  |  |
| 7       | WDGA           | Бит активации                                                    |  |  |
|         |                | . WDGA=1,                                                        |  |  |
|         |                | 0 — ;<br>1 — ;                                                   |  |  |
| 60      | T[6:0]         | Значение семиразрядного счётчика (от старших разрядов к младшим) |  |  |
|         |                | 4096x2 <sup>WDGTB</sup> , PCLK<br>APB                            |  |  |

### 33.1.6 MDR\_WWDG->CFR

### Таблица 483 – Регистр CFR

| Номер  | 3110 | 9   | 8      | 7      | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|--------|------|-----|--------|--------|-----|-----|-----|-----|-----|-----|-----|
| Доступ | U    | R/W | R/W    | R/W    | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| Сброс  |      | 0   | 0      | 0      | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
|        | -    | EWI | WDGTB1 | WDGTB0 | W6  | W5  | W4  | W3  | W2  | W1  | W0  |

#### Таблица 484 – Описание бит регистра CFR

| No   | Функциональное                    | Расшифровка функционального имени бита, краткое |
|------|-----------------------------------|-------------------------------------------------|
| бита | <b>чупкциональнос</b><br>имя бита | описание назначения и принимаемых значений      |
| 3110 | IIIVIA OIITU                      | omeume manu tema ii ii piimiaaeaaaa siiu tema   |
| 9    | EWI                               | Раннее предупреждающее прерывание.              |
|      |                                   | ,<br>40h.                                       |
| 87   | WGTB[1:0]                         | Делитель частоты сторожевого таймера.           |
|      |                                   | 00 – (PCLK / 4096) /1                           |
|      |                                   | 01 – (PCLK / 4096) /2                           |
|      |                                   | 10 – (PCLK / 4096) /4                           |
|      |                                   | 11 – (PCLK / 4096) /8                           |
| 60   | W[6:0]                            | Значение окна.                                  |
|      |                                   | T[6:0] , 40h-7Fh. T>W,                          |
|      |                                   | RESET. T=3Fh,                                   |
|      |                                   |                                                 |

### 33.1.7 MDR\_WWDG->SR

### Таблица 485 – Регистр SR

| Номер  | 311 | 0    |
|--------|-----|------|
| Доступ | U   | R/W  |
| Сброс  | 0   | 0    |
|        | •   | EWIF |

### Таблица 486 – Описание бит регистра SR

| No   | Функциональное | Расшифровка функционального имени бита, краткое |
|------|----------------|-------------------------------------------------|
| бита | имя бита       | описание назначения и принимаемых значений      |
| 311  |                |                                                 |
| 0    | EWIF           | Флаг раннего предупреждающего прерывания.       |
|      |                | ,<br>40h.                                       |
|      |                | EWI=0                                           |

## 34 Предельно допустимые характеристики микросхемы

Таблица 487 – Предельно допустимые и предельные режимы эксплуатации микросхем

| тизинци тот предельно допустичные и п                         | Редельны                              | едельные режимы эксплуатации микросхо |                        |                     | PUCACI      |  |
|---------------------------------------------------------------|---------------------------------------|---------------------------------------|------------------------|---------------------|-------------|--|
|                                                               | Буквенное<br>обозначение<br>параметра | Норма параметра                       |                        |                     |             |  |
| Наименование параметра,<br>единица измерения                  |                                       | допус                                 | (ельно<br>тимый<br>жим | Предельный<br>режим |             |  |
|                                                               | )<br>00<br>11                         | не<br>менее                           | не<br>более            | не<br>менее         | не<br>более |  |
| ,                                                             | Ucc                                   | 2,2                                   | 3,6                    | _                   | 4,0         |  |
| USB,                                                          |                                       | 3,0                                   | 3,6                    | _                   | 4,0         |  |
| * *                                                           | Ucca                                  | 2,4                                   | 3,6                    | _                   | 4,0         |  |
|                                                               | Ucc                                   | 1,8                                   | 3,6                    | _                   | 4,0         |  |
| , ,                                                           | $ m U_{IL}$                           |                                       |                        |                     |             |  |
| : PA, PB, PC, PD, PE, PF, RESET,<br>WAKEUP, SHDN, JTAG_EN     |                                       | 0                                     | 0,8                    | -0,3                | _           |  |
| : DN, DP                                                      |                                       | 0                                     | 0,8                    | -0,3                | _           |  |
| : OSC_IN                                                      | -                                     | 0                                     | 0.0                    | 0.2                 |             |  |
| HSE BYPASS = 1                                                |                                       | 0                                     | 0,8                    | -0,3                | _           |  |
| ; , ; : PD, PE (0-10)                                         | $U_{ m IH}$                           | 2,0                                   | 3,6                    | _                   | 4,0         |  |
| : PA, PB, PC, PE (11-15), PF,<br>RESET, WAKEUP, SHDN, JTAG_EN |                                       | 2,0                                   | 5,25                   | _                   | 5,3         |  |
| : DN, DP                                                      |                                       | 2,0                                   | 3,6                    | _                   | 4,0         |  |
| : OSC_IN<br>HSE BYPASS = 1                                    |                                       | 2,0                                   | 3,6                    | _                   | 4,0         |  |
| , ,<br>(                                                      | Іон                                   |                                       |                        |                     |             |  |
| : PA, PB, PC, PD, PE (0-5, 8-15), PF                          |                                       | -6                                    | _                      | -10                 | _           |  |
| PE (6, 7), STANDBY                                            |                                       | -3                                    | _                      | -10                 | -           |  |
| : DN, DP                                                      | 1                                     | -6                                    | -                      | -40                 | _           |  |
| : PA, PB, PC, PD, PE, PF,                                     | I <sub>OL</sub>                       | _                                     | 6                      | _                   | 10          |  |
| STANDBY<br>: DN, DP                                           |                                       | _                                     | 6                      | _                   | 40          |  |
|                                                               | 1                                     | l .                                   | l .                    | l .                 |             |  |

|                                                      | , e _                                 | Норма параметра                  |                        |                     |             |  |
|------------------------------------------------------|---------------------------------------|----------------------------------|------------------------|---------------------|-------------|--|
| Наименование параметра,<br>единица измерения         | Буквенное<br>обозначение<br>параметра | Предельно<br>допустимый<br>режим |                        | Предельный<br>режим |             |  |
|                                                      | ů<br>90<br>Př                         | не<br>менее                      | не<br>более            | не<br>менее         | не<br>более |  |
| ,                                                    | $f_{C}$                               | _                                | 80                     | _                   | _           |  |
| ,                                                    | $f_{C\_HSE}$                          |                                  |                        |                     |             |  |
| HSE,<br>: BYPASS = 0                                 |                                       | 2                                | 16                     | _                   | _           |  |
| : BYPASS = 1                                         |                                       | 0                                | 80                     |                     | _           |  |
|                                                      | f <sub>C_LSE</sub>                    |                                  |                        |                     |             |  |
| LSE,                                                 |                                       |                                  |                        |                     |             |  |
| : BYPASS = 0                                         |                                       | 32                               | 33                     | -                   | _           |  |
| : BYPASS = 1                                         |                                       | 0                                | 1 000                  |                     | _           |  |
| PLL,                                                 | f_PLL                                 | 6                                | 16                     | _                   | _           |  |
| Параметры ЦАП                                        |                                       | ı                                |                        |                     |             |  |
|                                                      |                                       |                                  |                        |                     |             |  |
| ; ,<br>: REFD0, REFD1                                | Uref(dac)                             | 2,4                              | Ucca                   | _                   | _           |  |
| : Cfg_M_REF = 1                                      |                                       |                                  |                        |                     |             |  |
| ,                                                    | $R_{LOAD}$                            | 10                               | _                      | -                   | _           |  |
| ,                                                    | C <sub>LOAD</sub>                     | _                                | 100                    | _                   | _           |  |
| Параметры АЦП                                        |                                       |                                  |                        |                     |             |  |
| , ,                                                  | **                                    |                                  | TI 0.4                 | 0.2                 |             |  |
| : ADC1_Cfg_M_REF = 1<br>ADC2_Cfg_M_REF = 1           | U <sub>ADC1_REF-</sub>                | 0                                | U <sub>CCA</sub> -2,4  | -0,3                | _           |  |
|                                                      |                                       |                                  |                        |                     |             |  |
| ,<br>: ADC1_Cfg_M_REF = 1<br>ADC2_Cfg_M_REF = 1      | U <sub>ADC0_REF+</sub>                | 2,4                              | $U_{CCA}$              | _                   | 4,0         |  |
| , , $U_{REF(ADC)} = U_{ADC0\_REF+} - U_{ADC1\_REF-}$ | U <sub>REF(ADC)</sub>                 | 2,4                              | $U_{CCA}$              | -                   | _           |  |
| **                                                   | Uain                                  | U <sub>ADC1_REF</sub>            | U <sub>ADC0_REF+</sub> | -0,3                | 4,0         |  |
| ,                                                    | f_ADC                                 | _                                | 14                     | _                   | _           |  |

|                                              | . <b>e</b> .                         | Норма параметра                  |             |                     |             |  |
|----------------------------------------------|--------------------------------------|----------------------------------|-------------|---------------------|-------------|--|
| Наименование параметра,<br>единица измерения | Буквенное<br>обозначени<br>параметра | Предельно<br>допустимый<br>режим |             | Предельный<br>режим |             |  |
|                                              |                                      | не<br>менее                      | не<br>более | не<br>менее         | не<br>более |  |
| , ,<br>: PA, PB, PC, PD, PE, PF, Standby     | $C_{L}$                              | _                                | 30          | _                   | _           |  |
| ; = 125°                                     | $N_{PR}$                             | 10 000                           | _           | _                   | _           |  |
| ; = 25 °                                     |                                      | 25                               | _           | _                   | _           |  |
| : = 85 °                                     | $t_{\mathrm{GS}}$                    | 10                               | _           | _                   | _           |  |
| : = 125 °                                    |                                      | 1                                | _           | _                   | _           |  |

\*

 $U_{\rm CC}$   $\pm 0.2$  .

 $U_{ADC1\_REF-} = GND_A$   $U_{ADC0\_REF+} = U$  A,  $U_{REF(DAC)} = U$  A.

CADCU\_REF+ = C A, CREF(DAC) = C

## 35 Электрические параметры микросхемы

Таблица 488 – Электрические параметры микросхемы

| Наименование параметра,                                              | иное<br>пение<br>гтра                 | -              | <b>Норма</b><br>параметра |                          |
|----------------------------------------------------------------------|---------------------------------------|----------------|---------------------------|--------------------------|
| единица измерения,<br>режим измерения                                | Буквенное<br>обозначение<br>параметра | не менее       | не более                  | Температура<br>среды, °С |
| : PA, PB, PC, PD, PE, PF, STANDBY, DN, DP                            | U <sub>OL</sub>                       | -              | 0,4                       | 25,<br>125,<br>-60       |
| ; PA, PB, PC, PD, PE, PF, STANDBY, DN, DP<br>: U <sub>CC</sub> = 3,0 | Uон                                   | 2,4            | _                         |                          |
| ; PA, PB, PC, PD, PE, PF, STANDBY<br>: U <sub>CC</sub> = 2,2         | СОН                                   | 1,6            | _                         |                          |
| ,                                                                    | $U_{BOR}$                             | 1,8            | 2,1                       |                          |
| ; PA, PB, PC, PD, PE, PF, RESET, WAKEUP, DN, DP                      | $ m I_{ILH}$                          | -1,0           | 1,0                       |                          |
| ; OSC_IN<br>: BYPASS = 1                                             | IILH                                  | -40,0          | 40,0                      |                          |
| : PA, PB, PC, PD, PE, PF, RESET,<br>WAKEUP, DN, DP                   | I                                     | -1,0           | 1,0                       |                          |
| ; OSC_IN<br>: BYPASS = 1                                             | $ m I_{ILL}$                          | -1,0           | 1,0                       |                          |
|                                                                      | Laga                                  | _              | 10                        |                          |
| ( ),                                                                 | I <sub>CCS</sub>                      |                | 20                        |                          |
| ,                                                                    | $I_{OCC1}$                            | _              | 120                       |                          |
| LSI RC- ,                                                            | $f_{O\_LSI}$                          | 10             | 60                        |                          |
| HSI RC-                                                              | fo_HSI                                | 6              | 10                        |                          |
| PLL,                                                                 |                                       | 400            |                           |                          |
|                                                                      | $ m f_{O\_PLL}$                       | 100            | _                         |                          |
| Hamassarry v A I III                                                 |                                       | <del>_</del>   | 6                         |                          |
| Параметры АЦП                                                        | E <sub>NADC</sub>                     | 12             | T _                       | 25,                      |
| ,                                                                    | E <sub>DLADC</sub>                    | <del>-12</del> | 2                         | 125,<br>-60              |
| ,                                                                    | E <sub>ILADC</sub>                    | -3             | 3                         | 30                       |
| ,                                                                    | E <sub>OFFADC</sub>                   | -6             | 6                         |                          |

| Наименование параметра,               | іное<br>сение<br>стра                 | Норма<br>параметра   |          | rrypa<br>°C              |
|---------------------------------------|---------------------------------------|----------------------|----------|--------------------------|
| единица измерения,<br>режим измерения | Буквенное<br>обозначение<br>параметра | не менее             | не более | Температура<br>среды, °С |
| , %                                   | Egainado                              | -1                   | 1        | 25,<br>125,<br>-60       |
| Параметры ЦАП                         |                                       |                      |          |                          |
|                                       | E <sub>NDAC</sub>                     | 12                   | _        | 25,                      |
| ,                                     | E <sub>DLDAC</sub>                    | -1                   | 2        | 125,<br>-60              |
| 1                                     | E <sub>ILDAC</sub>                    | -6                   | 6        |                          |
| ,                                     | E <sub>OFFDAC</sub>                   | -40                  | 40       |                          |
| , %                                   | EGAINDAC                              | -2                   | 2        |                          |
| ,                                     | Uo_DAC min                            | _                    | 0,08     |                          |
| 1                                     | Uo_DAC max                            | $U_{REF(DAC)}$ -0,08 | _        |                          |
| Компаратор                            |                                       |                      |          |                          |
| ,                                     | ton_c*                                | _                    | 100      | 25,                      |
| ,                                     | t <sub>d_</sub> *                     | _                    | 400      | 125,<br>-60              |
| * ton_c, td_                          |                                       |                      |          |                          |
| .431290.711                           |                                       |                      |          |                          |

-, , ( 488).

## 36 Справочные данные

```
134 - 141.
- 1986
       91 , 1986 94 -
                               3 700
- 1986
       92
                          4 300
- 1986
       92 1
                          5 800
- 1986
       93
                          4 500
- 1986
       94
                          8 300
- 1986
       94
                          8 600
- 1986
       91,1986 94 -
                               39°/;
                          36°/;
- 1986
       92
- 1986
       92 1
                          6°/;
- 1986
       93
                          29°/;
- 1986
       94
                          10°/;
- 1986
                          12° / .
       94
                                     1
- 1986
       91,1986 94 -
                             12,5
- 1986
       92
                          11
- 1986
       93
                          10
```

489.

Таблица 489 – Предельно допустимые значения ОИН

|            | Длительность ОИН, мкс<br>Предельно допустимое напряжение ОИН, В |       |  |  |
|------------|-----------------------------------------------------------------|-------|--|--|
| Тип вывода |                                                                 |       |  |  |
|            | 1,0                                                             | 10,0  |  |  |
|            | 1 000                                                           | 300   |  |  |
|            | 1 750                                                           | 500   |  |  |
|            | 1 750                                                           | 1 000 |  |  |

490.

Таблица 490 – Справочные данные

| Наименование параметра,                                                                                                                                          | ное<br>ение<br>тра                            | Hoj         | рма<br>метра          | тура<br>°С               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|-----------------------|--------------------------|
| единица измерения,<br>режим измерения                                                                                                                            | Буквенное<br>обозначение<br>параметра         | не менее    | не более              | Температура<br>среды, °С |
| ), ,<br>U <sub>CC</sub> =3,6                                                                                                                                     | I <sub>CCS1</sub>                             | _           | 1,5                   | 25,<br>125,<br>-60       |
| , , , U <sub>CC</sub> =0                                                                                                                                         | I <sub>CC_B</sub>                             | _           | 5                     |                          |
| SLEEPDEEP, , $U_{CC} = 3.6  , f_C = f_{O\_LSI}$                                                                                                                  | I <sub>OCC2</sub>                             | _           | 2                     |                          |
| PBD PBVD,                                                                                                                                                        | t <sub>SU(PBD)</sub><br>t <sub>SU(PBVO)</sub> | _           | 2                     |                          |
| $U = 3.6$ , $I_{OL} = 80$                                                                                                                                        | U <sub>O_LDO</sub>                            | 1,62        | 1,98                  |                          |
| / , , , ; : PA-PF : -ModeRX = 0 - ModeRX = 1                                                                                                                     | U <sub>TH(PA-PF)</sub>                        | 100<br>200  | 400<br>500            |                          |
| , ,<br>: STANDBY, C <sub>1</sub> = 30                                                                                                                            | t <sub>W(STANDBY)</sub>                       | _           | 10                    |                          |
| : $PA - PF$ $U_{CC} = 2,2$ ,<br>- $PowerTX = 00$ , $C_1 = 50$<br>- $PowerTX = 01$ , $C_1 = 50$<br>- $PowerTX = 10$ , $C_1 = 50$<br>- $PowerTX = 11$ , $C_1 = 50$ | t <sub>W(PA-PF)</sub>                         | -<br>-<br>- | 10<br>100<br>20<br>10 |                          |
| - PowerTX = 11, $C_1$ = 30<br>: DN, DP $U_{CC}$ = 3,0 ,<br>- Full Speed, $C_1$ = 50<br>- Low Speed, $C_1$ = 600                                                  | t <sub>W(DN, DP)</sub>                        | _<br>_<br>_ | 5<br>15<br>300        |                          |
| ,                                                                                                                                                                | R <sub>PULL</sub>                             | 20          | 100                   |                          |
| Компаратор                                                                                                                                                       | •                                             |             |                       |                          |
| $U_{CC} = 3.6$                                                                                                                                                   | U <sub>IO_C</sub>                             | _           | ±0,5                  | 25,<br>125,<br>-60       |
| , ,<br>U = 3,6                                                                                                                                                   | U <sub>TH</sub> _                             | 8           | 12                    | - 00                     |
| : U = 3,6                                                                                                                                                        | U <sub>REF_C</sub>                            | 1,17        | 1,23                  |                          |

| Наименование параметра,                                                                               | ное<br>ение<br>тра                    | _        | рма<br>метра                | ırypa<br>,°C             |
|-------------------------------------------------------------------------------------------------------|---------------------------------------|----------|-----------------------------|--------------------------|
| единица измерения,<br>режим измерения                                                                 | Буквенное<br>обозначение<br>параметра | не менее | не более                    | Температура<br>среды, °С |
| Тактовые частоты и генераторы                                                                         |                                       |          |                             |                          |
| HSIRDY $U = 2.2$                                                                                      | t <sub>SU(HSI)</sub>                  | _        | 1                           | 25,<br>125,<br>-60       |
| LSIRDY LSION, c, $U = 2.2 B$                                                                          | t <sub>SU(LSI)</sub>                  | _        | 80                          |                          |
| HSEON, c, $U = 2.2 B$                                                                                 | t <sub>SU(HSE)</sub>                  | _        | 2048/f <sub>C_H</sub><br>se |                          |
| LSERDY LSEON, c, $U = 2.2 B$                                                                          | t <sub>SU(LSE)</sub>                  | _        | 4096/<br>f <sub>C_LSE</sub> |                          |
| $\begin{array}{c} & & \text{PLLRDY} \\ & & \text{PLLON,} \\ & \text{U} & = 2,2 \text{ B} \end{array}$ | t <sub>SU(PLL)</sub>                  | _        | 100                         |                          |
| U = 2.2 B                                                                                             | tw( )                                 | 20       | _                           |                          |
| POR,                                                                                                  | tpor                                  | _        | 6                           |                          |
| nRESET<br>« »,                                                                                        | tw(nRESET)min                         | 200      | _                           |                          |
| nRESET, « »,                                                                                          | t <sub>W(nRESET)max</sub>             | _        | 10                          |                          |
| АЦП                                                                                                   |                                       |          |                             |                          |
| Ucc = 3,6 B                                                                                           | t <sub>A_ADC</sub>                    | _        | 4/f <sub>C_ADC</sub>        | 25,<br>125,              |
| U = 3,6 B                                                                                             | tao_adc                               | _        | 28/f <sub>C_ADC</sub>       | -60                      |
| , - ADC1_Cfg_M_REF = 1 - ADC2_Cfg_M_REF = 1                                                           | I <sub>ADC0_VREF+</sub>               | _        | 50                          |                          |
| ,<br>- ADC1_Cfg_M_REF = 1<br>- ADC2_Cfg_M_REF = 1                                                     | I <sub>ADC0_VREF</sub> -              | -50      | _                           |                          |
| : $U_{CCA} = 3.6$ , $f_{C\_ADC} = 14$                                                                 | I <sub>OCCADC</sub>                   | _        | 3                           |                          |
| ,                                                                                                     | $f_{C\_ADCMIN}$                       | 10       | _                           |                          |

| Наименование параметра,                         | ное<br>ение<br>тра                              | Ној<br>паран | тура<br>°С |                          |
|-------------------------------------------------|-------------------------------------------------|--------------|------------|--------------------------|
| единица измерения,<br>режим измерения           | Буквенное<br>обозначение<br>параметра           | не менее     | не более   | Температура<br>среды, °С |
| ЦАП                                             |                                                 |              |            |                          |
| $U_{CC} = 3.6 \text{ B}, C_1 = 50$ , $R_1 = 10$ | tsu(dac)                                        | _            | 5,2        | 25,<br>125,<br>-60       |
| , , , U = 2,4 B                                 | t <sub>ON_DA</sub>                              | _            | 10         |                          |
| $Cfg\_M\_REF0 = 1$                              | I <sub>DAC1_</sub> VREF                         | _            | 500        |                          |
| $Cfg\_M\_REF1 = 1$                              | I <sub>DAC2_VREF</sub>                          | _            | 500        |                          |
| ,                                               | $I_{OCCDAC}$                                    | _            | 2          |                          |
| USB                                             |                                                 | _            |            |                          |
| DN, DP                                          |                                                 |              |            | 25,                      |
| ,                                               | $R_{DN\text{-}UCC}$                             |              |            | 125,                     |
| - D-PULLUP = 1                                  |                                                 | 1            | 2          | -60                      |
| - D+PULLUP = 1                                  | R <sub>DP-UCC</sub>                             | 1            | 2          |                          |
| DN, DP                                          |                                                 |              |            |                          |
| «      »,                                       | $R_{\text{DN-GND}}$                             |              |            |                          |
| - D-PULLDOWN = 1                                |                                                 | 10           | 20         |                          |
| - D+PULLDOWN = 1                                | R <sub>DP-GND</sub>                             | 10           | 20         |                          |
| DN, DP,                                         | $\begin{array}{c} R_{DN} \\ R_{DP} \end{array}$ | 14           | 34         |                          |

### 37 Типовые зависимости

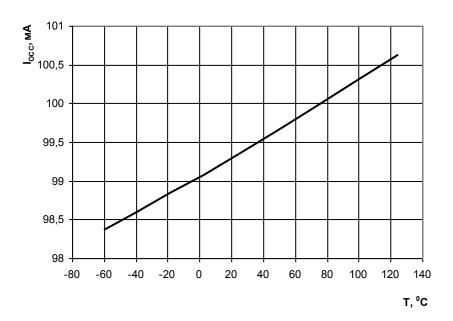



Рисунок 134. Зависимость динамического тока потребления от температуры при:  $f_C = 80 \ M\Gamma$ ц



Рисунок 135. Зависимость динамического тока потребления от напряжения питания

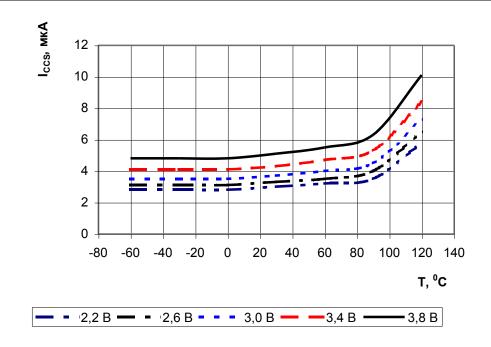



Рисунок 136. Зависимость статического тока потребления в режиме покоя (регулятор напряжения выключен) от температуры при разном напряжении

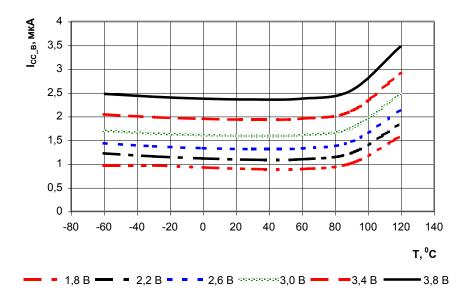



Рисунок 137. Зависимость тока потребления батарейного домена от температуры при разном напряжении

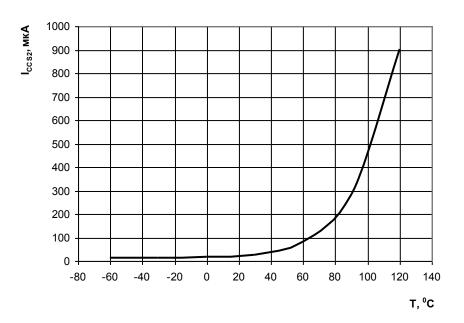



Рисунок 138. Зависимость статического тока потребления в режиме покоя (регулятор напряжения включен) от температуры

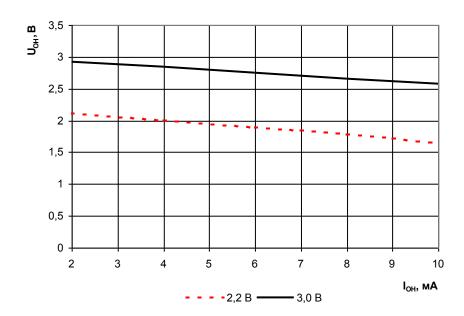



Рисунок 139. Зависимость выходного напряжения высокого уровня от выходного тока высокого уровня при напряжении питания 2,2 и 3,0 В

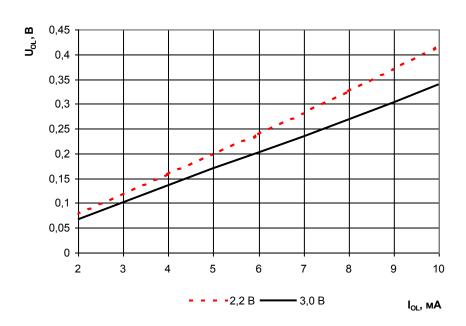



Рисунок 140. Зависимость выходного напряжения низкого уровня от выходного тока низкого уровня при напряжении питания 2,2 и 3,0 В

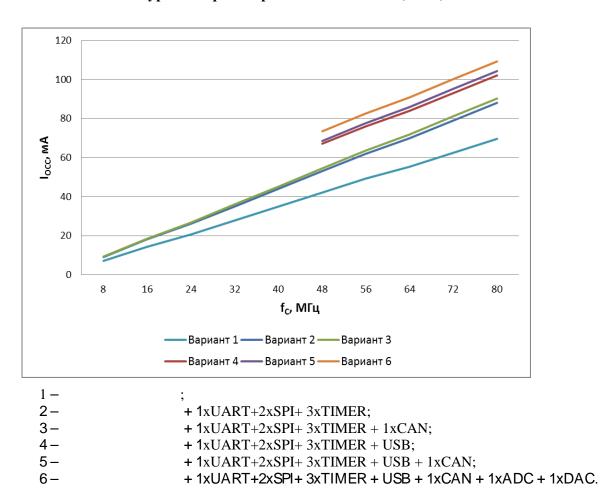



Рисунок 141. Типовая зависимость тока потребления микросхемы от тактовой частоты, в зависимости от набора используемых периферийных блоков

Таблица 491 – Типовые значения потребления основных блоков микросхемы при нормальных условиях: T = 25 °C, Ucc = 3,3 В

| Название блока | Потребление блока | Примечание |      |  |  |
|----------------|-------------------|------------|------|--|--|
|                | 0,5               | /          |      |  |  |
| USB            | 15                | (          | 48 ) |  |  |
| TIMER          | 0,04              | /          |      |  |  |
| SPI            | 0,03              | /          |      |  |  |
| UART           | 0,05              | /          |      |  |  |
| CAN            | 0,03              | /          |      |  |  |
| I2C            | 0,02              | /          |      |  |  |

## 38 Габаритный чертеж микросхемы

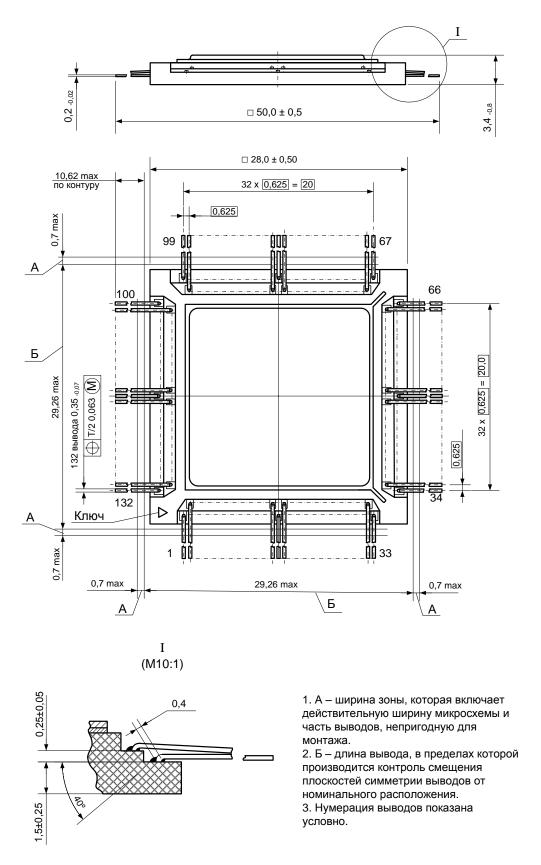
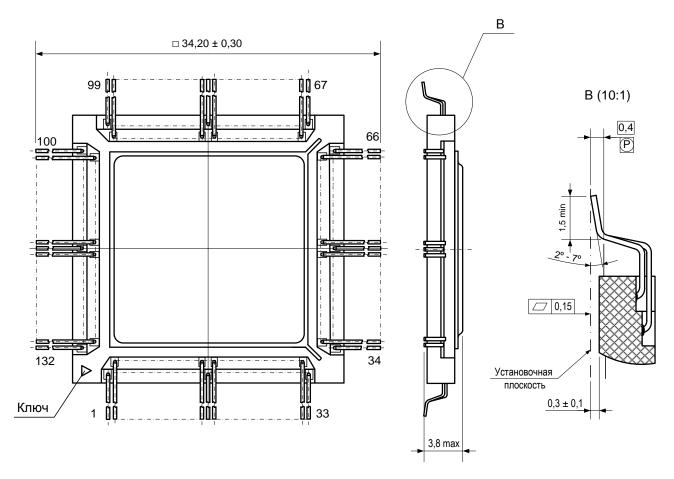




Рисунок 142. Корпус 4229.132-3



Остальное см. рисунок 142

Рисунок 143. Корпус 4229.132-3 с формованными выводами

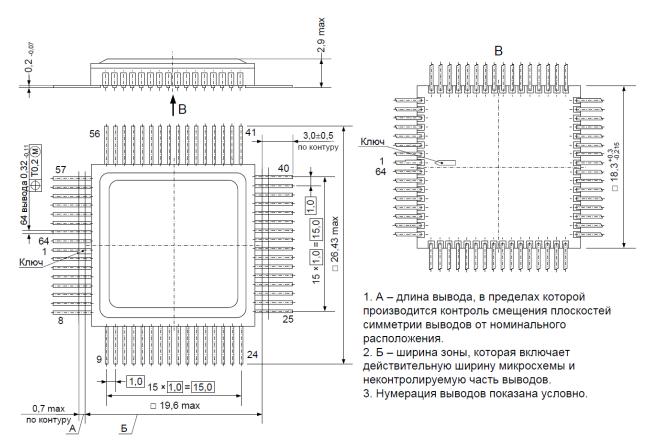



Рисунок 144. Корпус Н18.64-1В

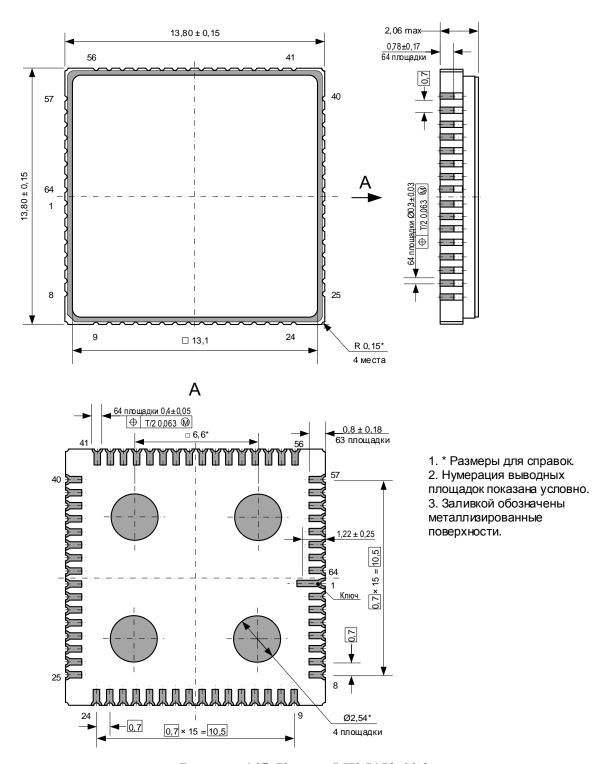



Рисунок 145. Корпус МК 5153.64-2

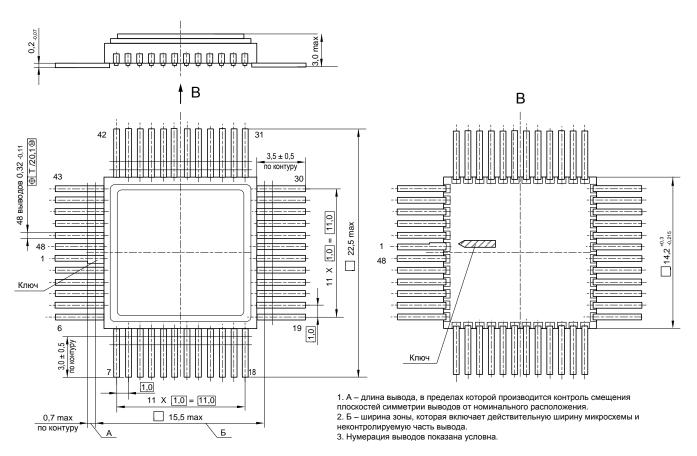



Рисунок 146. Корпус Н16.48-1В

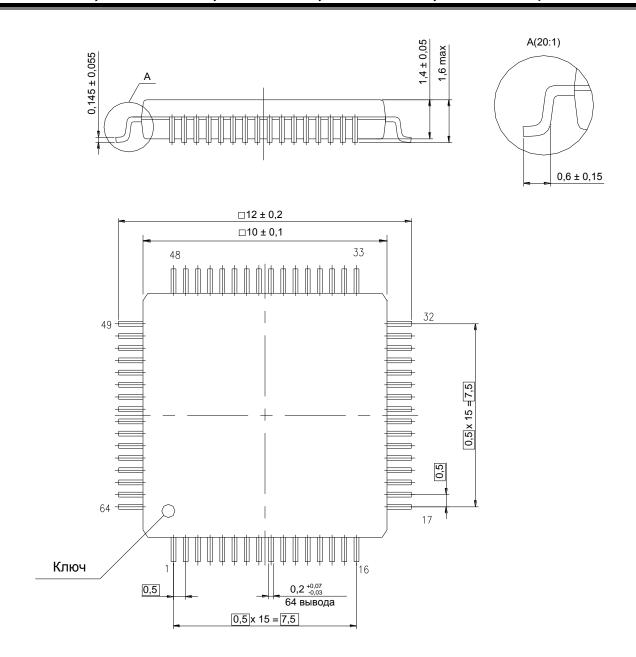



Рисунок 147. Корпус LQFP64

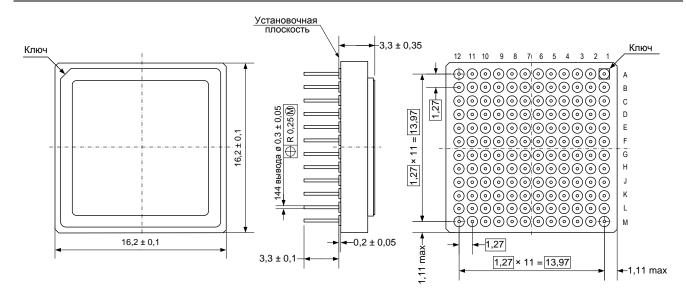



Рисунок 148. Корпус МК 6109.144-А

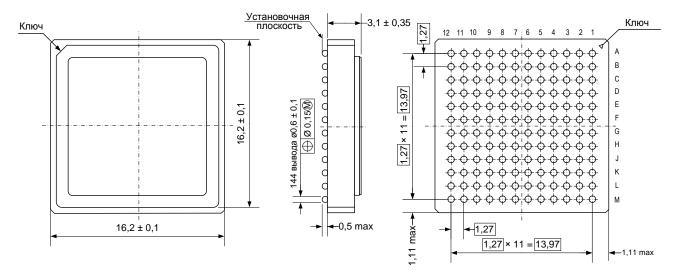
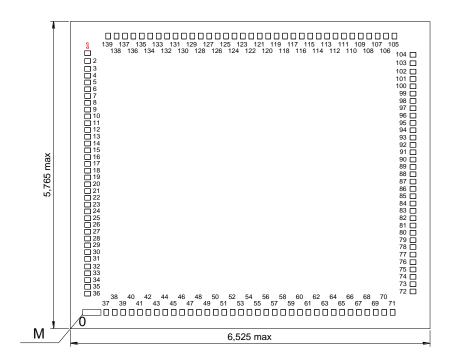
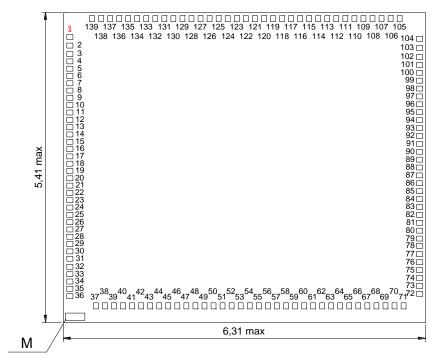




Рисунок 149. Корпус МК 8307.144-АНЗ



Размеры КП 1 - 36, 72 - 104 (105 x 58) мкм Размеры КП 37 - 71, 105 - 139 (85 x 105) мкм


- 1 Номера контактных площадок (КП), кроме первой КП, присвоены условно, их расположение соответствует топологическому чертежу.
- 2 М маркировка кристалла, MLDR44.
- 3 Координаты КП смотри в таблице.
- 4 Толщина кристалла (0,480±0,015) мм.
- 5 Материал КП сплав АІСи толщиной 3 мкм с содержанием Си 0,5%.

#### Рисунок 150. Кристалл (бескорпусное исполнение 1986ВЕ91Н4, К1986ВЕ91Н4)

Таблица 492 – Координаты КП

| № КП    | Of savename I/II | бозначение КП Координаты КП |         | № КП    | Обозначение КП | Координаты КП |         |
|---------|------------------|-----------------------------|---------|---------|----------------|---------------|---------|
| 745 K11 | Ооозначение КП   | X                           | Y       | 745 K11 | Ооозначение КП | X             | Y       |
| 1       | Ucc (VD33!)      | 0,000                       | 4774,63 | 17      | PF14           | 0,000         | 2734,63 |
| 2       | Ucc (VD33!)      | 0,000                       | 4629,63 | 18      | PF15           | 0,000         | 2609,63 |
| 3       | PF0              | 0,000                       | 4484,63 | 19      | PE15           | 0,000         | 2484,63 |
| 4       | PF1              | 0,000                       | 4359,63 | 20      | PE13           | 0,000         | 2359,63 |
| 5       | PF2              | 0,000                       | 4234,63 | 21      | PE12           | 0,000         | 2234,63 |
| 6       | PF3              | 0,000                       | 4109,63 | 22      | USBD+          | 0,000         | 2109,63 |
| 7       | PF4              | 0,000                       | 3984,63 | 23      | USBDR+         | 0,000         | 1984,63 |
| 8       | PF5              | 0,000                       | 3859,63 | 24      | USBDR-         | 0,000         | 1859,63 |
| 9       | PF6              | 0,000                       | 3734,63 | 25      | USBD-          | 0,000         | 1734,63 |
| 10      | PF7              | 0,000                       | 3609,63 | 26      | PE11           | 0,000         | 1609,63 |
| 11      | PF8              | 0,000                       | 3484,63 | 27      | SHDN           | 0,000         | 1484,63 |
| 12      | PF9              | 0,000                       | 3359,63 | 28      | Ducc (VDD!)    | 0,000         | 1359,63 |
| 13      | PF10             | 0,000                       | 3234,63 | 29      | GND (VSS!)     | 0,000         | 1234,63 |
| 14      | PF11             | 0,000                       | 3109,63 | 30      | GND* (VSS!)    | 0,000         | 1109,63 |
| 15      | PF12             | 0,000                       | 2984,63 | 31      | Ucc (VD33!)    | 0,000         | 984,63  |
| 16      | PF13             | 0,000                       | 2859,63 | 32      | Ucc (VD33!)    | 0,000         | 844,63  |

| 30 10-1  | 06             | Координ              | аты КП           | 30 7077    | 07               | Координаты КП        |                    |  |
|----------|----------------|----------------------|------------------|------------|------------------|----------------------|--------------------|--|
| № КП     | Обозначение КП | X                    | Y                | - № КП     | Обозначение КП   | X                    | Y                  |  |
| 33       | BUcc           | 0,000                | 719,63           | 87         | PC9              | 5989,000             | 2409,50            |  |
| 34       | Standby        | 0,000                | 594,63           | 88         | PC8              | 5989,000             | 2544,50            |  |
| 35       | PE7            | 0,000                | 469,63           | 89         | PC7              | 5989,000             | 2679,50            |  |
| 36       | PE6            | 0,000                | 344,63           | 90         | PC6              | 5989,000             | 2814,50            |  |
| 37       | BDUcc          | 344,130              | 0,00             | 91         | PC5              | 5989,000             | 2949,50            |  |
| 38       | WAKEUP         | 499,130              | 0,00             | 92         | PC4              | 5989,000             | 3084,50            |  |
| 39       | EXT_POR        | 654,130              | 0,00             | 93         | PC3              | 5989,000             | 3219,50            |  |
| 40       | RESET          | 809,130              | 0,00             | 94         | PC2              | 5989,000             | 3354,50            |  |
| 41       | OSC_IN         | 964,130              | 0,00             | 95         | PC1              | 5989,000             | 3489,50            |  |
| 42       | OSC_OUT        | 1119,130             | 0,00             | 96         | PC0              | 5989,000             | 3624,50            |  |
| 43       | PE14           | 1274,130             | 0,00             | 97         | PB0              | 5989,000             | 3759,50            |  |
| 44       | PE5            | 1429,130             | 0,00             | 98         | PB1              | 5989,000             | 3894,50            |  |
| 45       | PE4            | 1584,130             | 0,00             | 99         | PB2              | 5989,000             | 4029,50            |  |
| 46       | PE8            | 1739,130             | 0,00             | 100        | PB3              | 5989,000             | 4164,50            |  |
| 47       | PE3            | 1894,130             | 0,00             | 101        | PB4              | 5989,000             | 4299,50            |  |
| 48       | PE2            | 2049,130             | 0,00             | 102        | JTAG_EN          | 5989,000             | 4434,50            |  |
| 49       | AGND (VSS!)    | 2204,130             | 0,00             | 103        | Ucc (VD33!)      | 5989,000             | 4589,50            |  |
| 50       | AGND (VSS!)    | 2359,130             | 0,00             | 104        | Ucc (VD33!)      | 5989,000             | 4744,50            |  |
| 51       | AUcc1          | 2514,130             | 0,00             | 105        | GND (VSS!)       | 5647,945             | 5089,00            |  |
| 52       | AUcc1          | 2669,130             | 0,00             | 106        | Ducc (VDD!)      | 5492,945             | 5089,00            |  |
| 53       | PE10           | 2824,130             | 0,00             | 107        | PB5              | 5337,945             | 5089,00            |  |
| 54       | PE9            | 2979,130             | 0,00             | 108        | PB6              | 5182,945             | 5089,00            |  |
| 55       | PE1            | 3134,130             | 0,00             | 109        | PB7              | 5027,945             | 5089,00            |  |
| 56       | PE0            | 3289,130             | 0,00             | 110        | PB8              | 4872,945             | 5089,00            |  |
| 57       | AGND (VSS!)    | 3444,130             | 0,00             | 111        | PB9              | 4717,945             | 5089,00            |  |
| 58       | AGND (VSS!)    | 3599,130             | 0,00             | 112        | PB10             | 4562,945             | 5089,00            |  |
| 59       | AUcc           | 3754,130             | 0,00             | 113        | PB11             | 4407,945             | 5089,00            |  |
| 60       | AUcc           | 3909,130             | 0,00             | 114        | PB12             | 4252,945             | 5089,00            |  |
| 61       | PD15           | 4064,130             | 0,00             | 115        | PB13             | 4097,945             | 5089,00            |  |
| 62       | PD14           | 4219,130             | 0,00             | 116        | PB14             | 3942,945             | 5089,00            |  |
| 63       | PD13           | 4374,130             | 0,00             | 117        | TM[0]            | 3787,945             | 5089,00            |  |
| 64       | PD12           | 4529,130             | 0,00             | 118        | TM[1]            | 3632,945             | 5089,00            |  |
| 65       | PD11           | 4684,130             | 0,00             | 119        | PB15             | 3477,945             | 5089,00            |  |
| 66       | PD10           | 4839,130             | 0,00             | 120        | PA15             | 3322,945             | 5089,00            |  |
| 67       | PD8            | 4994,130             | 0,00             | 121        | PA14             | 3167,945             | 5089,00            |  |
| 68       | PD7            | 5149,130             | 0,00             | 122        | PA13             | 3012,945             | 5089,00            |  |
| 69       | PD4            | 5304,130             | 0,00             | 123        | PA12             | 2857,945             | 5089,00            |  |
| 70       | PD0            | 5459,130             | 0,00             | 124        | PA11             | 2702,945             | 5089,00            |  |
| 71       | PD1            | 5614,130             | 0,00             | 125        | PA10             | 2547,945             | 5089,00            |  |
| 72       | PD2            | 5989,000             | 384,50           | 126        | TM[2]            | 2392,945             | 5089,00            |  |
| 73<br>74 | PD3<br>PD5     | 5989,000<br>5989,000 | 519,50<br>654,50 | 127<br>128 | Flash VPP<br>PA9 | 2237,945<br>2082,945 | 5089,00<br>5089,00 |  |
| 75       | PD5<br>PD6     | 5989,000             | 789,50           | 128        |                  |                      | 5089,00            |  |
| 76       | PD6<br>PD9     | 5989,000             | 789,50<br>924,50 | 130        | PA8<br>PA7       | 1927,945<br>1772,945 | 5089,00            |  |
| 77       | Ucc (VD33!)    | 5989,000             | 1064,50          | 130        | PA7              | 1617,945             | 5089,00            |  |
| 78       | Ucc (VD33!)    | 5989,000             | 1204,50          | 131        | PA5              | 1462,945             | 5089,00            |  |
|          | GND (VSS!)     | 5989,000             | 1329,50          | 133        | PA3              | 1307,945             | 5089,00            |  |
| 80       | Ducc (VDD!)    | 5989,000             | 1329,30          | 134        | PA3              | 1152,945             | 5089,00            |  |
| 81       | PC15           | 5989,000             | 1599,50          | 134        | PA2              | 997,945              | 5089,00            |  |
| 82       | PC13<br>PC14   | 5989,000             | 1734,50          | 136        | PA1              | 842,945              | 5089,00            |  |
| 83       | PC14<br>PC13   | 5989,000             | 1869,50          | 130        | PA0              | 687,945              | 5089,00            |  |
| 84       | PC13<br>PC12   | 5989,000             | 2004,50          | 137        | Ducc (VDD!)      | 532,945              | 5089,00            |  |
| 85       | PC12<br>PC11   | 5989,000             | 2139,50          | 138        | GND (VSS!)       | 377,945              | 5089,00            |  |
| 86       | PC10           | 5989,000             | 2274,50          | 137        | OLAD (APP:)      | 211,743              | 5005,00            |  |



Размеры КП 85 x 105 мкм<sup>2</sup>

- 1 Номера контактных площадок (КП) присвоены условно, кроме первой КП и их расположение соответствует топологическому чертежу.
- 2 М маркировка кристалла, MLDR75.

Рисунок 151. Кристалл (бескорпусное исполнение 1986ВЕ94Н4, К1986ВЕ94Н4)

Таблица 493 – Координаты КП

| № КП    | Обазизични ИП  | Коордиі | наты КП | № КП   | Обозначение КП | Координаты КП |         |
|---------|----------------|---------|---------|--------|----------------|---------------|---------|
| 745 K11 | Обозначение КП | X       | Y       | Nº KII | Ооозначение КП | X             | Y       |
| 1       | Ucc (VD33!)    | 0,000   | 4774,63 | 24     | USBDR-         | 0,000         | 1859,63 |
| 2       | Ucc (VD33!)    | 0,000   | 4629,63 | 25     | USBD-          | 0,000         | 1734,63 |
| 3       | PF0            | 0,000   | 4484,63 | 26     | PE11           | 0,000         | 1609,63 |
| 4       | PF1            | 0,000   | 4359,63 | 27     | SHDN           | 0,000         | 1484,63 |
| 5       | PF2            | 0,000   | 4234,63 | 28     | Ducc (VDD!)    | 0,000         | 1359,63 |
| 6       | PF3            | 0,000   | 4109,63 | 29     | GND (VSS!)     | 0,000         | 1234,63 |
| 7       | PF4            | 0,000   | 3984,63 | 30     | GND* (VSS!)    | 0,000         | 1109,63 |
| 8       | PF5            | 0,000   | 3859,63 | 31     | Ucc (VD33!)    | 0,000         | 984,63  |
| 9       | PF6            | 0,000   | 3734,63 | 32     | Ucc (VD33!)    | 0,000         | 844,63  |
| 10      | PF7            | 0,000   | 3609,63 | 33     | BUcc           | 0,000         | 719,63  |
| 11      | PF8            | 0,000   | 3484,63 | 34     | Standby        | 0,000         | 594,63  |
| 12      | PF9            | 0,000   | 3359,63 | 35     | PE7            | 0,000         | 469,63  |
| 13      | PF10           | 0,000   | 3234,63 | 36     | PE6            | 0,000         | 344,63  |
| 14      | PF11           | 0,000   | 3109,63 | 37     | BDUcc          | 344,130       | 0,00    |
| 15      | PF12           | 0,000   | 2984,63 | 38     | WAKEUP         | 499,130       | 0,00    |
| 16      | PF13           | 0,000   | 2859,63 | 39     | EXT_POR        | 654,130       | 0,00    |
| 17      | PF14           | 0,000   | 2734,63 | 40     | RESET          | 809,130       | 0,00    |
| 18      | PF15           | 0,000   | 2609,63 | 41     | OSC_IN         | 964,130       | 0,00    |
| 19      | PE15           | 0,000   | 2484,63 | 42     | OSC_OUT        | 1119,130      | 0,00    |
| 20      | PE13           | 0,000   | 2359,63 | 43     | PE14           | 1274,130      | 0,00    |
| 21      | PE12           | 0,000   | 2234,63 | 44     | PE5            | 1429,130      | 0,00    |
| 22      | USBD+          | 0,000   | 2109,63 | 45     | PE4            | 1584,130      | 0,00    |
| 23      | USBDR+         | 0,000   | 1984,63 | 46     | PE8            | 1739,130      | 0,00    |

| No I/II | Обознаначиз ИП | Координ  | аты КП  | No I/II | Обознаненна І/П | Координ  | аты КП  |
|---------|----------------|----------|---------|---------|-----------------|----------|---------|
| №КП     | Обозначение КП | X        | Y       | № КП    | Обозначение КП  | X        | Y       |
| 47      | PE3            | 1894,130 | 0,00    | 94      | PC2             | 5989,000 | 3354,50 |
| 48      | PE2            | 2049,130 | 0,00    | 95      | PC1             | 5989,000 | 3489,50 |
| 49      | AGND (VSS!)    | 2204,130 | 0,00    | 96      | PC0             | 5989,000 | 3624,50 |
| 50      | AGND (VSS!)    | 2359,130 | 0,00    | 97      | PB0             | 5989,000 | 3759,50 |
| 51      | AUcc1          | 2514,130 | 0,00    | 98      | PB1             | 5989,000 | 3894,50 |
| 52      | AUcc1          | 2669,130 | 0,00    | 99      | PB2             | 5989,000 | 4029,50 |
| 53      | PE10           | 2824,130 | 0,00    | 100     | PB3             | 5989,000 | 4164,50 |
| 54      | PE9            | 2979,130 | 0,00    | 101     | PB4             | 5989,000 | 4299,50 |
| 55      | PE1            | 3134,130 | 0,00    | 102     | JTAG_EN         | 5989,000 | 4434,50 |
| 56      | PE0            | 3289,130 | 0,00    | 103     | Ucc (VD33!)     | 5989,000 | 4589,50 |
| 57      | AGND (VSS!)    | 3444,130 | 0,00    | 104     | Ucc (VD33!)     | 5989,000 | 4744,50 |
| 58      | AGND (VSS!)    | 3599,130 | 0,00    | 105     | GND (VSS!)      | 5647,945 | 5089,00 |
| 59      | AUcc           | 3754,130 | 0,00    | 106     | Ducc (VDD!)     | 5492,945 | 5089,00 |
| 60      | AUcc           | 3909,130 | 0,00    | 107     | PB5             | 5337,945 | 5089,00 |
| 61      | PD15           | 4064,130 | 0,00    | 108     | PB6             | 5182,945 | 5089,00 |
| 62      | PD14           | 4219,130 | 0,00    | 109     | PB7             | 5027,945 | 5089,00 |
| 63      | PD13           | 4374,130 | 0,00    | 110     | PB8             | 4872,945 | 5089,00 |
| 64      | PD12           | 4529,130 | 0,00    | 111     | PB9             | 4717,945 | 5089,00 |
| 65      | PD11           | 4684,130 | 0,00    | 112     | PB10            | 4562,945 | 5089,00 |
| 66      | PD10           | 4839,130 | 0,00    | 113     | PB11            | 4407,945 | 5089,00 |
| 67      | PD8            | 4994,130 | 0,00    | 114     | PB12            | 4252,945 | 5089,00 |
| 68      | PD7            | 5149,130 | 0,00    | 115     | PB13            | 4097,945 | 5089,00 |
| 69      | PD4            | 5304,130 | 0,00    | 116     | PB14            | 3942,945 | 5089,00 |
| 70      | PD0            | 5459,130 | 0,00    | 117     | TM[0]           | 3787,945 | 5089,00 |
| 71      | PD1            | 5614,130 | 0,00    | 118     | TM[1]           | 3632,945 | 5089,00 |
| 72      | PD2            | 5989,000 | 384,50  | 119     | PB15            | 3477,945 | 5089,00 |
| 73      | PD3            | 5989,000 | 519,50  | 120     | PA15            | 3322,945 | 5089,00 |
| 74      | PD5            | 5989,000 | 654,50  | 121     | PA14            | 3167,945 | 5089,00 |
| 75      | PD6            | 5989,000 | 789,50  | 122     | PA13            | 3012,945 | 5089,00 |
| 76      | PD9            | 5989,000 | 924,50  | 123     | PA12            | 2857,945 | 5089,00 |
| 77      | Ucc (VD33!)    | 5989,000 | 1064,50 | 124     | PA11            | 2702,945 | 5089,00 |
| 78      | Ucc (VD33!)    | 5989,000 | 1204,50 | 125     | PA10            | 2547,945 | 5089,00 |
| 79      | GND (VSS!)     | 5989,000 | 1329,50 | 126     | TM[2]           | 2392,945 | 5089,00 |
| 80      | Ducc (VDD!)    | 5989,000 | 1464,50 | 127     | Flash VPP       | 2237,945 | 5089,00 |
| 81      | PC15           | 5989,000 | 1599,50 | 128     | PA9             | 2082,945 | 5089,00 |
| 82      | PC14           | 5989,000 | 1734,50 | 129     | PA8             | 1927,945 | 5089,00 |
| 83      | PC13           | 5989,000 | 1869,50 | 130     | PA7             | 1772,945 | 5089,00 |
| 84      | PC12           | 5989,000 | 2004,50 | 131     | PA6             | 1617,945 | 5089,00 |
| 85      | PC11           | 5989,000 | 2139,50 | 132     | PA5             | 1462,945 | 5089,00 |
| 86      | PC10           | 5989,000 | 2274,50 | 133     | PA4             | 1307,945 | 5089,00 |
| 87      | PC9            | 5989,000 | 2409,50 | 134     | PA3             | 1152,945 | 5089,00 |
| 88      | PC8            | 5989,000 | 2544,50 | 135     | PA2             | 997,945  | 5089,00 |
| 89      | PC7            | 5989,000 | 2679,50 | 136     | PA1             | 842,945  | 5089,00 |
| 90      | PC6            | 5989,000 | 2814,50 | 137     | PA0             | 687,945  | 5089,00 |
| 91      | PC5            | 5989,000 | 2949,50 | 138     | Ducc (VDD!)     | 532,945  | 5089,00 |
| 92      | PC4            | 5989,000 | 3084,50 | 139     | GND (VSS!)      | 377,945  | 5089,00 |
| 93      | PC3            | 5989,000 | 3219,50 |         | ` ′             |          |         |

# 39 Информация для заказа

| Обозначение      | Маркировка                 | Тип корпуса | Температурный<br>диапазон |
|------------------|----------------------------|-------------|---------------------------|
| 1986 91          | 1986 91                    | 4229.132-3  | 60 – 125 °                |
| 1986 91          | 1986 91                    | 4229.132-3  | 60 – 125 °                |
| 1986 91          | 1986 91 •                  | 4229.132-3  | 0-70°                     |
| 1986 91          | <b>1986</b> 9 <b>1</b> •-1 | 4229.132-3  | 0-70°                     |
| 1986 91          | <b>1986</b> 91 •-2         | 4229.132-3  | 0-70°                     |
| 1986 92          | 1986 92                    | .18.64-1    | 60 – 125 °                |
| 1986 92          | 1986 92                    | .18.64-1    | 60 – 125 °                |
| 1986 92          | 1986 92 •                  | .18.64-1    | 0-70°                     |
| 1986 92 1        | <b>1986</b> 92 1           | 5153.64-2   | 60 – 125 °                |
| <b>1986</b> 92 1 | 1986 92 1                  | 5153.64-2   | 60 – 125 °                |
| 1986 92 1        | 1986 92 1•                 | 5153.64-2   | 0-70°                     |
| 1986 92QC        | MDR32F9Q2C <u>ARM</u>      | LQFP64      | 0-70°                     |
| 1986 92QI        | MDR32F9Q2I <u>ARM</u>      | LQFP64      | 40 – 85 °                 |
| 1986 92          | <b>1986</b> 92 •-1         | .18.64-1    | 0-70°                     |
| 1986 92          | <b>1986 92</b> •-2         | .18.64-1    | 0 – 70 °                  |
| 1986 93          | 1986 93                    | .16.48-1    | 60 – 125 °                |
| 1986 93          | 1986 93                    | .16.48-1    | 60 – 125 °                |
| 1986 93          | 1986 93 •                  | .16.48-1    | 0 – 70 °                  |
| 1986 93          | <b>1986</b> 93 •-1         | .16.48-1    | 0-70°                     |
| 1986 93          | <b>1986</b> 93 •-2         | .16.48-1    | 0-70°                     |
| 1986 94          | 1986 94                    | 4229.132-3  | 60 – 125 °                |
| 1986 94          | 1986 94                    | 4229.132-3  | 60 – 125 °                |
| 1986 94          | 1986 94 •                  | 4229.132-3  | 0-70°                     |
| 1986 94          | 1986 94                    | 6109.144-   | 60 – 125 °                |
| 1986 94          | 1986 94                    | 6109.144-   | 60 – 125 °                |
| 1986 94          | 1986 94 •                  | 6109.144-   | 0-70°                     |
| 1986 94          | 1986 94                    | 8307.144-   | 60 – 125 °                |
| 1986 94          | 1986 94                    | 8307.144-   | 60 – 125 °                |
| 1986 94          | 1986 94 •                  | 8307.144-   | 0-70°                     |

## 40 Лист регистрации изменений

| №<br>п/п | Дата       | Версия | Краткое содержание изменения       | №№<br>изменяемых<br>листов |
|----------|------------|--------|------------------------------------|----------------------------|
| 1        | 14.10.2010 | 1.1    | 1.                                 |                            |
|          |            |        |                                    |                            |
|          | 10.02.2011 | 2.0    | 2.                                 |                            |
| 2        | 18.02.2011 | 2.0    | 1.<br>2.                           |                            |
| 3        | 24.06.2011 | 2.1    | LQFP64 1986 92                     |                            |
| 4        | 05.08.2011 | 2.3    | -                                  |                            |
|          |            |        | CMSIS, , CAN,                      |                            |
| 5        | 10.08.2011 | 2.4    | •                                  |                            |
|          |            |        |                                    |                            |
| 6        | 25.08.2011 | 2.5    |                                    |                            |
| 7        | 28.09.2011 | 3.0    |                                    |                            |
| 8        | 14.06.2012 | 3.1.0  |                                    |                            |
| 9        | 20.09.2012 | 3.2.0  | / 4                                | 1                          |
| 10       | 20.12.2012 | 3.2.1  | / 4                                | 8                          |
| 11       | 15.05.2013 | 3.2.2  | :                                  | 11                         |
|          |            |        | 66                                 |                            |
| 12       | 21.06.2013 | 3.3.0  | 1986 94                            |                            |
| 13       | 26.06.2013 | 3.4.0  |                                    |                            |
| 14       | 17.07.2013 | 3.4.1  |                                    |                            |
| 15       | 22.07.2013 | 3.4.2  |                                    | 525-532                    |
| 16       | 22.07.2013 | 3.4.3  | SysTick,                           | 142,525,<br>527-532        |
| 17       | 12.05.2014 | 3.4.4  | 2                                  | 12                         |
| 18       | 07.07.2014 | 3.5.0  | .61.                               | 258                        |
| 19       | 07.08.2014 | 3.6.0  |                                    | 1                          |
| 20       | 20.11.2014 | 3.7.0  | 487                                | 530                        |
| 21       | 11.03.2015 | 3.7.1  | 1. ,                               | 101                        |
| 22       | 00.00.2015 | 200    | 2. 144                             | 191                        |
| 22       | 08.09.2015 | 3.8.0  | 1986 91 4,<br>1986 94 4, 1986 94 4 |                            |
| 23       | 06.11.2015 | 3.9.0  | 100<br>/ SCTDONE<br>270            | 510, 511<br>337<br>289     |
|          |            |        | 142, 150                           | 188, 197                   |

|    |            |        | 109                              | 172, 173                                                |
|----|------------|--------|----------------------------------|---------------------------------------------------------|
|    |            |        | MDR_PORTx                        | 177                                                     |
| 24 | 04.10.2016 | 3.10.0 |                                  |                                                         |
| 25 | 24.07.2018 | 3.11.0 |                                  | 519, 527                                                |
| 26 | 30.08.2018 | 3.12.0 |                                  | 17, 23, 214, 228, 270,279, 291, 306, 307, 314, 485, 521 |
| 27 | 21.09.2018 | 3.13.0 | 1986 92 1, 1986 94 ,<br>1986 94  |                                                         |
| 28 | 12.10.2018 | 3.14.0 | 6109.144- , 8307.144-            | 25, 26                                                  |
| 29 | 01.03.2019 | 3.15.0 | 145                              | 523<br>252. 275                                         |
|    |            |        | 23                               | 62                                                      |
| 30 | 06.03.2019 | 3.16.0 | PE4, PE5,<br>PE6, PE7 5153.64-2  | 11                                                      |
| 31 | 16.04.2019 | 3.17.0 | 281, 282<br>EV_DELAY CHy_CNTRL2. | 306                                                     |
|    |            |        | 18.64-1                          | 522                                                     |
| 32 | 10.09.2019 | 3.18.0 | ,                                | 319                                                     |
|    |            |        | 6 369                            | 402                                                     |
|    |            |        | 28                               | 165                                                     |
| 33 | 16.09.2019 | 3.19.0 | 30, 31 397<br>16.48-1            | 438<br>524                                              |
| 33 | 10.09.2019 | 3.13.0 | 10.40-1                          | J 2 <del>'1</del>                                       |