Эта статья – логическое продолжение статей про Характеристики устройств дифзащиты, Устройство изнутри УЗО, АД и АВДТ, и Внутренняя электрическая схема электронного УЗО.
Я решил написать эту статью, чтобы прояснить для себя некоторые вопросы касательно функционирования УЗО. Надеюсь, моим читателям тоже будет интересно. Если кажется, что некоторые вопросы я не раскрыл – смотрите информацию по ссылкам в начале.
Также рекомендую статью моего коллеги – Как работает УЗО при обрыве нуля.
Содержание статьи:
Когда может сработать УЗО?
Тема эта очень обширна, одной статьи точно не хватит. Поэтому покажу в картинках.
Что представляет из себя система питания наших домов и квартир? Если брать общий случай, схема будет такой:
На трансформаторной подстанции (ТП) обмотки трансформатора (это может быть и генератор) с одной стороны глухо заземлены. L1, L2, L3 – линии, на которых присутствует линейное (между собой) напряжение 380 В или фазное (если измерять по отношению к нейтрали N) напряжение 220 В. Если с фазами всё понятно, то с N и PE всё сложнее – они могут разделяться на подстанции, как я изобразил (система TN-S), либо на вводе в дом (система TN-С-S), либо на лестничной площадке (система TN-С). В частном доме это может быть система без непосредственной связи с нейтралью – ТТ. Я не стал углубляться, изобразил заземляющий провод условно.
Подробнее о системах заземления я рассказывал в этой статье.
Кроме того, внутри каждой квартиры, кроме провода РЕ (которого в старых домах может и не быть), присутствуют проводящие предметы, хорошо или плохо проводящие ток, и имеющие потенциал, близкий к потенциалу земли – водопроводные и газовые трубы, мокрые полы, и т.д. Их я тоже изобразил в виде значка заземления внутри каждой квартиры.
К чему я веду? Я хочу показать, как может проходить ток утечки, на который среагирует УЗО, который установили в квартире №1.
Под словом “утечка” в данной статье я подразумеваю не столько утечку, которая есть в общем случае всегда и у всех приборов (сопротивление изоляции никогда не равно бесконечности). Я говорю про такой ток утечки, который больше уставки УЗО (номинального дифференциального отключающего тока IΔn). То есть, такая утечка, которая приводит к тому, что срабатывает УЗО.
Для упрощения схемы никакие устройства, кроме УЗО, я не показал:
Самое очевидное – утечка с фазного провода L1 после УЗО:
- На “земляной” провод РЕ, либо на корпуса приборов, подключенные к нему (с электрической точки зрения это одно и то же),
- На предметы, не подключенные к защитному проводнику РЕ, но имеющие какую-никакую электрическую связь с землёй (с планетой Земля). А напомню, ноль (нейтраль) трансформатора на подстанции глухо (жёстко) заземлен,
- На другие фазы. В обычной квартире маловероятно, но чудеса бывают. Например, при ухудшении изоляции проводов где-то в подъезде.
Но по тем же путям может быть утечка не только с фазного провода, но и с нулевого. Только для достижения нужного значения тока срабатывания нужно большее напряжение. Это если мы говорим про утечку с нуля на землю – ведь у них разность обычно всего несколько вольт.
В итоге УЗО выключает нагрузку, в которой произошла утечка, тем самым устраняя причину и её последствия.
Причиной утечки может быть появление электрической связи по указанным путям. Связь эта может быть как из-за ухудшения изоляции, так и из-за прикосновения человека к металлическим частям, которые по разным причинам могут быть под напряжением.
По большому счету, току утечки всё равно, через что течь – через конденсат на стене ванной, через отсыревшую стену в подъезде, или через человека, от мокрой правой руки к босой левой ноге, стоящей в грязи.
Два вида УЗО: механические и электронные
Все УЗО сейчас выпускаются по ГОСТ Р 51326.1-99 (МЭК 61008-1-96) Выключатели автоматические, управляемые дифференциальным током, бытового и аналогичного назначения без встроенной защиты от сверхтоков.
По АВДТ ГОСТ другой, их мы рассматривать не будем, и разницы никакой нет, разве что добавляется защита от сверхтоков по одному или обоим полюсам.
УЗО (точнее, ВДТ – выключатели дифференциального тока) разделяются на два подвида: независящие от наличия напряжения сети (электромеханические УЗО) и зависящие от наличия питания (электронные УЗО).
Механические УЗО не имеют собственного потребления электроэнергии и сохраняют работоспособность при обрыве нулевого проводника. Официально, согласно ГОСТ 31601.2.1-2012 механические УЗО называются “ВДТ, функционально независящие от напряжения сети”.
Электронные УЗО (ВДТ, функционально зависящие от напряжения сети) и их особенности описаны в ГОСТ 31601.2.2-2012.
Сработает ли УЗО при обрыве нуля или фазы?
Везде при обсуждении разницы работы между электронным или электромеханическим (ЭМ) УЗО рассматривают только один случай – обрыв нуля на входе. Механика считается надежнее, поскольку УЗО в этом случае продолжает выполнять защитную функцию и выключается при ухудшении изоляции или прикосновении человека к фазе.
Для простоты рассматриваю только однофазную электроустановку.
Стоит добавить, что ЭМ УЗО останется полностью работоспособным и сохраняет свои защитные функции и при обрыве нуля на выходе.
Такая же ситуация – при обрыве фазы на входе или выходе ЭМ УЗО.
Хотя в этом случае защиты и не требуется, однако, при прикосновении в нулевому проводнику или замыкании его на РЕ, УЗО сработает. Разумеется, если на N по отношению к РЕ будет какой-то потенциал, а ток утечки будет выше номинального дифференциального отключающего тока IΔn. Такая ситуация может быть и при различных неисправностях проводки. Например, если выключить все (или почти все) АВ в щитке, и замкнуть нейтральный и защитный провод – групповое (или если его нет, вводное) УЗО сработает.
Теперь рассмотрим, что будет в тех же ситуациях с функционированием электронного УЗО. Обрыв нуля на входе эл.УЗО – самая опасная ситуация – УЗО в случае необходимости не сработает. При обрыве нуля на выходе – сработает.
При обрыве фазы – ситуация аналогичная.
Само собой, при обрыве нуля или фазы на входе у ЭМ и электронного УЗО кнопка Тест не работает, т.к. на неё не подается напряжение для создания тока тестовой утечки.
Механика или электроника?
Идут споры, что лучше – электронные УЗО и АВДТ, или механические? По поводу электронной начинки беспокоиться не стоит. Схемотехника отработана, надежность повышается (конечно, не у всех брендов)), а поскольку в быту сейчас почти вся техника – электронная, практически перестали выпускать дифы защиты класса “АС”.
Электронные устройства дешевле, недостаток работы при пониженном напряжении или его отсутствии проявляется крайне редко, и может быть частично нивелирован установкой расцепителя мин-макс напряжения на вводной АВ.
Защиту класса “А”, которая более универсальна и предпочтительна, в УЗО спокойно может обеспечить механическая начинка. То же относится и к дифавтоматам АД, которые содержат в себе полноценную защиту от сверхтоков и имеют место для УЗО. А вот АВДТ класса “А” в двухмодульном исполнении пока ещё редкость. Пример – АВДТ32ЕМ от IEK. Одномодульные АВДТ долгое время будут только электронными. Это моё мнение, которое может отличаться от мнения продакт-менеджеров.
Обрыв нуля, при котором работают механические УЗО – не такая частая и опасная авария (в однофазных сетях), и её устранением должны заниматься другие устройства (реле напряжения). А вот повышенная утечка в электронном устройстве (телевизор, компьютер), на которую реагирует электронное УЗО типа “А”, случается чаще и последствия её опаснее.
Видео про работу УЗО при обрыве нуля на входе
Скачать
• Душкин Н.Д. и др. УЗО, учебно-справочное пособие. / УЗО - устройства защитного отключения, учебно-справочное пособие., pdf, 8.44 MB, скачан: 2813 раз./
На сегодня всё, делитесь мнениями в комментариях!
Все доходчиво. И хотя никогда не приходилось иметь дело с УЗО, но как понял в системе ТТ нужно использовать ЭМ УЗО.
УЗО нужно использовать в любой системе заземления, но в ТТ особенно, поскольку при замыкании на землю ток КЗ может быть недостаточен для срабатывания автоматического выключателя. В ПУЭ есть пункты про это:
1.7.59. Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО…
7.1.72. Если устройство защиты от сверхтока (автоматический выключатель, предохранитель) не обеспечивает время автоматического отключения 0,4 с при номинальном напряжении 220 В из-за низких значений токов короткого замыкания и установка (квартира) не охвачена системой уравнивания потенциалов, установка УЗО является обязательной.
Электронное или механическое – не регламентируется, но несомненно, ЭМ УЗО более надежны по причинам, которые я привёл в статье.
“Обрыв нуля,… не такая частая и опасная авария (в однофазных сетях)…”, может и не частая, но точно опасная. При обрыве нуля на вводе в квартире или частном доме, через нагрузку в N проводниках будет фаза! Человек, которого ни разу не било током от нуля и считающий что в нуле априори не может быть напряжения, без опасения коснется N и РЕ проводников (или N стоя на земле). Многие считают что если погас свет, значит нет напряжения, да и не каждый привык в первую очередь использовать индикаторную отвертку. В таком случае обязательно ЭМ УЗО, но учитывая что в последнее время все чаще используют реле напряжения, то при его наличии целесообразнее (в финансовом плане) использовать электронное УЗО.